Structurally defined epitopes of Haemophilus ducreyi lipooligosaccharides recognized by monoclonal antibodies (original) (raw)

Abstract

By use of enzyme-linked immunosorbent assay and immunoblotting techniques, the migration patterns and binding epitopes of lipooligosaccharides (LOS) from 10 Haemophilus ducreyi strains were investigated with two monoclonal antibodies (MAbs), MAHD6 and MAHD7, raised against LOS from H. ducreyi ITM 2665. Closely related LOS, with defined structures, from Haemophilus influenzae, Bordetella pertussis, Aeromonas spp., and synthetic glycoproteins were also included in the analyses. The MAbs bound to conserved epitopes of LOS exposed on the surface of H. ducreyi. The MAb MAHD6 reacted with 8 of the 10 LOS from H. ducreyi but with none of the other Haemophilus or Bordetella spp. with structurally defined LOS. It is suggested that MAb MAHD6 binds to a LOS epitope (-DD-Hepp-1-->6-beta-D-Glcp-). This LOS epitope is not present in the hexasaccharide structure of LOS from H. ducreyi ITM 4747 (E. K. H. Schweda, A. C. Sundström, L. M. Eriksson, J. A. Jonasson, and A. A. Lindberg, J. Biol. Chem. 269:12040-12048, 1994). Because MAb MAHD6 reacts with the epitope mentioned above, it also discriminates between the two LOS structures, the hexasaccharide group and the nonasaccharide group, of H. ducreyi strains. MAb MAHD7 recognizes the common conserved inner core region of the LOS because it reacts with all H. ducreyi strains and with LOS with minor components in the inner core epitope structure. Rabbit polyclonal sera raised against the LOS from strains CCUG 4438 and CCUG 7470 were tested with the 10 LOS from the H. ducreyi strains. The antiserum to CCUG 7470 reacted with all H. ducreyi strains as did MAb MAHD7, whereas the antiserum to CCUG 4438 reacted with only its homologous strain and strain ITM 4747. Also, the LOSs of our reference strains CCUG 4438 and CCUG 7470 were structurally analyzed by use of sugar analyses and electrospray ionization-mass spectrometry. The hexasaccharide and nonasaccharide structures obtained from LOS of strains CCUG 4438 and CCUG 7470 were identical to the described LOS structures from H. ducreyi ITM 4747 and ITM 2665, respectively. In conclusion, the MAb MAHD6 recognizes an epitope present in the nonasaccharide LOS group, whereas the MAb MAHD7 recognizes a conserved epitope on LOS of H. ducreyi, which is present in all strains of H. ducreyi tested. Two major groups of oligosaccharides were distinguished by their LOS structures and the reactivity of monoclonal as well as polyclonal antibodies. The majority of H. ducreyi strains possess a nonasaccharide structure of LOS.

Full Text

The Full Text of this article is available as a PDF (912.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed H. J., Borrelli S., Jonasson J., Eriksson L., Hanson S., Höjer B., Sunkuntu M., Musaba E., Roggen E. L., Lagergård T. Monoclonal antibodies against Haemophilus ducreyi lipooligosaccharide and their diagnostic usefulness. Eur J Clin Microbiol Infect Dis. 1995 Oct;14(10):892–898. doi: 10.1007/BF01691496. [DOI] [PubMed] [Google Scholar]
  2. Albritton W. L. Biology of Haemophilus ducreyi. Microbiol Rev. 1989 Dec;53(4):377–389. doi: 10.1128/mr.53.4.377-389.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banoub J. H., Choy Y. M., Michon F., Shaw D. H. Structural investigations on the core oligosaccharide of Aeromonas hydrophila (Chemotype II) lipopolysaccharide. Carbohydr Res. 1983 Apr 1;114(2):267–276. doi: 10.1016/0008-6215(83)88193-2. [DOI] [PubMed] [Google Scholar]
  4. Borrelli S., Roggen E. L., Hendriksen D., Jonasson J., Ahmed H. J., Piot P., Jansson P. E., Lindberg A. A. Monoclonal antibodies against Haemophilus lipopolysaccharides: clone DP8 specific for Haemophilus ducreyi and clone DH24 binding to lacto-N-neotetraose. Infect Immun. 1995 Jul;63(7):2665–2673. doi: 10.1128/iai.63.7.2665-2673.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Campagnari A. A., Spinola S. M., Lesse A. J., Kwaik Y. A., Mandrell R. E., Apicella M. A. Lipooligosaccharide epitopes shared among gram-negative non-enteric mucosal pathogens. Microb Pathog. 1990 May;8(5):353–362. doi: 10.1016/0882-4010(90)90094-7. [DOI] [PubMed] [Google Scholar]
  7. Campagnari A. A., Wild L. M., Griffiths G. E., Karalus R. J., Wirth M. A., Spinola S. M. Role of lipooligosaccharides in experimental dermal lesions caused by Haemophilus ducreyi. Infect Immun. 1991 Aug;59(8):2601–2608. doi: 10.1128/iai.59.8.2601-2608.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibson B. W., Melaugh W., Phillips N. J., Apicella M. A., Campagnari A. A., Griffiss J. M. Investigation of the structural heterogeneity of lipooligosaccharides from pathogenic Haemophilus and Neisseria species and of R-type lipopolysaccharides from Salmonella typhimurium by electrospray mass spectrometry. J Bacteriol. 1993 May;175(9):2702–2712. doi: 10.1128/jb.175.9.2702-2712.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gupta R. K., Szu S. C., Finkelstein R. A., Robbins J. B. Synthesis, characterization, and some immunological properties of conjugates composed of the detoxified lipopolysaccharide of Vibrio cholerae O1 serotype Inaba bound to cholera toxin. Infect Immun. 1992 Aug;60(8):3201–3208. doi: 10.1128/iai.60.8.3201-3208.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Helander I. M., Lindner B., Brade H., Altmann K., Lindberg A. A., Rietschel E. T., Zähringer U. Chemical structure of the lipopolysaccharide of Haemophilus influenzae strain I-69 Rd-/b+. Description of a novel deep-rough chemotype. Eur J Biochem. 1988 Nov 15;177(3):483–492. doi: 10.1111/j.1432-1033.1988.tb14398.x. [DOI] [PubMed] [Google Scholar]
  11. Jonasson J. A. Haemophilus ducreyi. Int J STD AIDS. 1993 Nov-Dec;4(6):317–321. doi: 10.1177/095646249300400602. [DOI] [PubMed] [Google Scholar]
  12. Kreiss J. K., Coombs R., Plummer F., Holmes K. K., Nikora B., Cameron W., Ngugi E., Ndinya Achola J. O., Corey L. Isolation of human immunodeficiency virus from genital ulcers in Nairobi prostitutes. J Infect Dis. 1989 Sep;160(3):380–384. doi: 10.1093/infdis/160.3.380. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lagergard T., Shiloach J., Robbins J. B., Schneerson R. Synthesis and immunological properties of conjugates composed of group B streptococcus type III capsular polysaccharide covalently bound to tetanus toxoid. Infect Immun. 1990 Mar;58(3):687–694. doi: 10.1128/iai.58.3.687-694.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lagergård T., Purvén M., Frisk A. Evidence of Haemophilus ducreyi adherence to and cytotoxin destruction of human epithelial cells. Microb Pathog. 1993 Jun;14(6):417–431. doi: 10.1006/mpat.1993.1041. [DOI] [PubMed] [Google Scholar]
  16. Lagergård T. The role of Haemophilus ducreyi bacteria, cytotoxin, endotoxin and antibodies in animal models for study of chancroid. Microb Pathog. 1992 Sep;13(3):203–217. doi: 10.1016/0882-4010(92)90021-f. [DOI] [PubMed] [Google Scholar]
  17. Lebbar S., Caroff M., Szabó L., Mérienne C., Szilógyi L. Structure of a hexasaccharide proximal to the hydrophobic region of lipopolysaccharides present in Bordetella pertussis endotoxin preparations. Carbohydr Res. 1994 Jun 17;259(2):257–275. doi: 10.1016/0008-6215(94)84061-x. [DOI] [PubMed] [Google Scholar]
  18. Mandrell R. E., Apicella M. A. Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiology. 1993 Apr;187(3-5):382–402. doi: 10.1016/S0171-2985(11)80352-9. [DOI] [PubMed] [Google Scholar]
  19. Mandrell R. E., McLaughlin R., Aba Kwaik Y., Lesse A., Yamasaki R., Gibson B., Spinola S. M., Apicella M. A. Lipooligosaccharides (LOS) of some Haemophilus species mimic human glycosphingolipids, and some LOS are sialylated. Infect Immun. 1992 Apr;60(4):1322–1328. doi: 10.1128/iai.60.4.1322-1328.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martin D. H., DiCarlo R. P. Recent changes in the epidemiology of genital ulcer disease in the United States. The crack cocaine connection. Sex Transm Dis. 1994 Mar-Apr;21(2 Suppl):S76–S80. [PubMed] [Google Scholar]
  21. Melaugh W., Phillips N. J., Campagnari A. A., Karalus R., Gibson B. W. Partial characterization of the major lipooligosaccharide from a strain of Haemophilus ducreyi, the causative agent of chancroid, a genital ulcer disease. J Biol Chem. 1992 Jul 5;267(19):13434–13439. [PubMed] [Google Scholar]
  22. Michon F., Shaw D. H., Banoub J. H. Structure of the lipopolysaccharide core isolated from a human strain of Aeromonas hydrophila. Eur J Biochem. 1984 Nov 15;145(1):107–114. doi: 10.1111/j.1432-1033.1984.tb08528.x. [DOI] [PubMed] [Google Scholar]
  23. Morse S. A. Chancroid and Haemophilus ducreyi. Clin Microbiol Rev. 1989 Apr;2(2):137–157. doi: 10.1128/cmr.2.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Phillips N. J., Apicella M. A., Griffiss J. M., Gibson B. W. Structural characterization of the cell surface lipooligosaccharides from a nontypable strain of Haemophilus influenzae. Biochemistry. 1992 May 12;31(18):4515–4526. doi: 10.1021/bi00133a019. [DOI] [PubMed] [Google Scholar]
  25. Phillips N. J., John C. M., Reinders L. G., Gibson B. W., Apicella M. A., Griffiss J. M. Structural models for the cell surface lipooligosaccharides of Neisseria gonorrhoeae and Haemophilus influenzae. Biomed Environ Mass Spectrom. 1990 Nov;19(11):731–745. doi: 10.1002/bms.1200191112. [DOI] [PubMed] [Google Scholar]
  26. Piot P., Laga M. Genital ulcers, other sexually transmitted diseases, and the sexual transmission of HIV. BMJ. 1989 Mar 11;298(6674):623–624. doi: 10.1136/bmj.298.6674.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rest R. F., Mandrell R. E. Neisseria sialytransferases and their role in pathogenesis. Microb Pathog. 1995 Dec;19(6):379–390. doi: 10.1006/mpat.1995.0073. [DOI] [PubMed] [Google Scholar]
  28. SVENNERHOLM L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957 Jun;24(3):604–611. doi: 10.1016/0006-3002(57)90254-8. [DOI] [PubMed] [Google Scholar]
  29. Schweda E. K., Hegedus O. E., Borrelli S., Lindberg A. A., Weiser J. N., Maskell D. J., Moxon E. R. Structural studies of the saccharide part of the cell envelope lipopolysaccharide from Haemophilus influenzae strain AH1-3 (lic3+). Carbohydr Res. 1993 Aug 17;246:319–330. doi: 10.1016/0008-6215(93)84043-6. [DOI] [PubMed] [Google Scholar]
  30. Schweda E. K., Jonasson J. A., Jansson P. E. Structural studies of lipooligosaccharides from Haemophilus ducreyi ITM 5535, ITM 3147, and a fresh clinical isolate, ACY1: evidence for intrastrain heterogeneity with the production of mutually exclusive sialylated or elongated glycoforms. J Bacteriol. 1995 Sep;177(18):5316–5321. doi: 10.1128/jb.177.18.5316-5321.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schweda E. K., Sundström A. C., Eriksson L. M., Jonasson J. A., Lindberg A. A. Structural studies of the cell envelope lipopolysaccharides from Haemophilus ducreyi strains ITM 2665 and ITM 4747. J Biol Chem. 1994 Apr 22;269(16):12040–12048. [PubMed] [Google Scholar]
  32. Shaw D. H., Squires M. J., Ishiguro E. E., Trust T. J. The structure of the heptose-3-deoxy-D-mannooctulosonic-acid region in a mutant form of Aeromonas salmonicida lipopolysaccharide. Eur J Biochem. 1986 Dec 1;161(2):309–313. doi: 10.1111/j.1432-1033.1986.tb10448.x. [DOI] [PubMed] [Google Scholar]
  33. TREVELYAN W. E., HARRISON J. S. Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrates. Biochem J. 1952 Jan;50(3):298–303. doi: 10.1042/bj0500298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsai C. M., Civin C. I. Eight lipooligosaccharides of Neisseria meningitidis react with a monoclonal antibody which binds lacto-N-neotetraose (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc). Infect Immun. 1991 Oct;59(10):3604–3609. doi: 10.1128/iai.59.10.3604-3609.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
  36. van Putten J. P. Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae. EMBO J. 1993 Nov;12(11):4043–4051. doi: 10.1002/j.1460-2075.1993.tb06088.x. [DOI] [PMC free article] [PubMed] [Google Scholar]