Attachment of Trypanosoma cruzi to mammalian cells requires parasite energy, and invasion can be independent of the target cell cytoskeleton (original) (raw)
Abstract
We have previously shown that the binding of Trypanosoma cruzi trypomastigotes to glutaraldehyde-fixed mammalian cells has the characteristics of a receptor-mediated process and that it mimics the attachment step of the invasion of live cells by this parasite. In this study we examined the metabolic requirements for the attachment of trypomastigotes to glutaraldehyde-fixed fibroblasts. The attachment of trypomastigotes to fixed cells is prevented when the energy conservation mechanisms are inhibited with the drugs 2-deoxyglucose, sodium azide, antimycin, crystal violet, oligomycin, N,N'-dicyclohexylcarbodiimide, and carbonyl cyanide 3-chlorophenylhydrazone. However, under the same experimental conditions, the movement of parasites is not significantly affected. Several of these drugs totally inhibit the penetration of the parasite into live target cells. We conclude that the attachment of trypomastigotes to mammalian cells is an active process that requires trypomastigote energy. In addition, we present evidence that penetration into nonphagocytic cells can also be an active process. Trypomastigotes can be seen in scanning electron micrographs traversing extended lamellipodia and entering paraformaldehyde-fixed epithelial cells. Cytochalasin D, a drug that disrupts microfilaments and prevents the formation of plasma membrane extensions mediated by actin, had little or no effect on trypomastigote invasion, while it inhibited Salmonella entry into epithelial cells.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews N. W., Hong K. S., Robbins E. S., Nussenzweig V. Stage-specific surface antigens expressed during the morphogenesis of vertebrate forms of Trypanosoma cruzi. Exp Parasitol. 1987 Dec;64(3):474–484. doi: 10.1016/0014-4894(87)90062-2. [DOI] [PubMed] [Google Scholar]
- Bredt W., Feldner J., Kahane I. Attachment of mycoplasmas to inert surfaces. Ciba Found Symp. 1981;80:3–16. doi: 10.1002/9780470720639.ch2. [DOI] [PubMed] [Google Scholar]
- Brener Z. Biology of Trypanosoma cruzi. Annu Rev Microbiol. 1973;27:347–382. doi: 10.1146/annurev.mi.27.100173.002023. [DOI] [PubMed] [Google Scholar]
- Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubremetz J. F., Rodriguez C., Ferreira E. Toxoplasma gondii: redistribution of monoclonal antibodies on tachyzoites during host cell invasion. Exp Parasitol. 1985 Feb;59(1):24–32. doi: 10.1016/0014-4894(85)90053-0. [DOI] [PubMed] [Google Scholar]
- FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finlay B. B., Falkow S. Common themes in microbial pathogenicity. Microbiol Rev. 1989 Jun;53(2):210–230. doi: 10.1128/mr.53.2.210-230.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finlay B. B., Heffron F., Falkow S. Epithelial cell surfaces induce Salmonella proteins required for bacterial adherence and invasion. Science. 1989 Feb 17;243(4893):940–943. doi: 10.1126/science.2919285. [DOI] [PubMed] [Google Scholar]
- Gadelha F. R., Moreno S. N., De Souza W., Cruz F. S., Docampo R. The mitochondrion of Trypanosoma cruzi is a target of crystal violet toxicity. Mol Biochem Parasitol. 1989 May 1;34(2):117–126. doi: 10.1016/0166-6851(89)90003-0. [DOI] [PubMed] [Google Scholar]
- Gonzalez A., Prediger E., Huecas M. E., Nogueira N., Lizardi P. M. Minichromosomal repetitive DNA in Trypanosoma cruzi: its use in a high-sensitivity parasite detection assay. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3356–3360. doi: 10.1073/pnas.81.11.3356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffin F. M., Jr, Griffin J. A., Leider J. E., Silverstein S. C. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med. 1975 Nov 1;142(5):1263–1282. doi: 10.1084/jem.142.5.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henriquez D., Piras R., Piras M. M. The effect of surface membrane modifications of fibroblastic cells on the entry process of Trypanosoma cruzi trypomastigotes. Mol Biochem Parasitol. 1981 Apr;2(5-6):359–366. doi: 10.1016/0166-6851(81)90087-6. [DOI] [PubMed] [Google Scholar]
- Kammer G. M., Boehm C. A., Rudolph S. A., Schultz L. A. Mobility of the human T lymphocyte surface molecules CD3, CD4, and CD8: regulation by a cAMP-dependent pathway. Proc Natl Acad Sci U S A. 1988 Feb;85(3):792–796. doi: 10.1073/pnas.85.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kipnis T. L., Calich V. L., da Silva W. D. Active entry of bloodstream forms of Trypanosoma cruzi into macrophages. Parasitology. 1979 Feb;78(1):89–98. doi: 10.1017/s0031182000048617. [DOI] [PubMed] [Google Scholar]
- Ley V., Andrews N. W., Robbins E. S., Nussenzweig V. Amastigotes of Trypanosoma cruzi sustain an infective cycle in mammalian cells. J Exp Med. 1988 Aug 1;168(2):649–659. doi: 10.1084/jem.168.2.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ley V., Robbins E. S., Nussenzweig V., Andrews N. W. The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments. J Exp Med. 1990 Feb 1;171(2):401–413. doi: 10.1084/jem.171.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nogueira N., Cohn Z. Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells. J Exp Med. 1976 Jun 1;143(6):1402–1420. doi: 10.1084/jem.143.6.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nogueira N. Host and parasite factors affecting the invasion of mononuclear phagocytes by Trypanosoma cruzi. Ciba Found Symp. 1983;99:52–73. doi: 10.1002/9780470720806.ch4. [DOI] [PubMed] [Google Scholar]
- Piras R., Piras M. M., Henríquez D. Trypanosoma cruzi-fibroblastic cell interactions necessary for cellular invasion. Ciba Found Symp. 1983;99:31–51. doi: 10.1002/9780470720806.ch3. [DOI] [PubMed] [Google Scholar]
- Russell D. G. Host cell invasion by Apicomplexa: an expression of the parasite's contractile system? Parasitology. 1983 Oct;87(Pt 2):199–209. doi: 10.1017/s0031182000052562. [DOI] [PubMed] [Google Scholar]
- Schenkman S., Andrews N. W., Nussenzweig V., Robbins E. S. Trypanosoma cruzi invade a mammalian epithelial cell in a polarized manner. Cell. 1988 Oct 7;55(1):157–165. doi: 10.1016/0092-8674(88)90018-9. [DOI] [PubMed] [Google Scholar]
- Singer S. J., Kupfer A. The directed migration of eukaryotic cells. Annu Rev Cell Biol. 1986;2:337–365. doi: 10.1146/annurev.cb.02.110186.002005. [DOI] [PubMed] [Google Scholar]
- Snary D. Receptors and recognition mechanisms of Trypanosoma cruzi. Trans R Soc Trop Med Hyg. 1985;79(5):587–590. doi: 10.1016/0035-9203(85)90163-4. [DOI] [PubMed] [Google Scholar]
- Teixeira M. M., Yoshida N. Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol. 1986 Mar;18(3):271–282. doi: 10.1016/0166-6851(86)90085-x. [DOI] [PubMed] [Google Scholar]
- Valerius N. H., Stendahl O., Hartwig J. H., Stossel T. P. Distribution of actin-binding protein and myosin in polymorphonuclear leukocytes during locomotion and phagocytosis. Cell. 1981 Apr;24(1):195–202. doi: 10.1016/0092-8674(81)90515-8. [DOI] [PubMed] [Google Scholar]
- Werk R. How does Toxoplasma gondii enter host cells? Rev Infect Dis. 1985 Jul-Aug;7(4):449–457. doi: 10.1093/clinids/7.4.449. [DOI] [PubMed] [Google Scholar]
- Yoshida N. Surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi. Infect Immun. 1983 May;40(2):836–839. doi: 10.1128/iai.40.2.836-839.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zenian A., Kierszenbaum F. Trypanosoma cruzi: differences in cell surface interaction of circulating (trypomastigote) and culture (epimastigote) forms with macrophages. J Parasitol. 1983 Aug;69(4):660–665. [PubMed] [Google Scholar]
- Zingales B., Colli W. Trypanosoma cruzi: interaction with host cells. Curr Top Microbiol Immunol. 1985;117:129–152. doi: 10.1007/978-3-642-70538-0_7. [DOI] [PubMed] [Google Scholar]
- de Araújo-Jorge T. C. The biology of Trypanosoma cruzi-macrophage interaction. Mem Inst Oswaldo Cruz. 1989 Oct-Dec;84(4):441–462. doi: 10.1590/s0074-02761989000400001. [DOI] [PubMed] [Google Scholar]
- de Carvalho T. M., de Souza W. Early events related with the behaviour of Trypanosoma cruzi within an endocytic vacuole in mouse peritoneal macrophages. Cell Struct Funct. 1989 Aug;14(4):383–392. doi: 10.1247/csf.14.383. [DOI] [PubMed] [Google Scholar]
- de Meirelles M. N., de Araújo Jorge T. C., de Souza W. Interaction of Trypanosoma cruzi with macrophages in vitro: dissociation of the attachment and internalization phases by low temperature and cytochalasin B. Z Parasitenkd. 1982;68(1):7–14. doi: 10.1007/BF00926652. [DOI] [PubMed] [Google Scholar]
- de Souza W. Cell biology of Trypanosoma cruzi. Int Rev Cytol. 1984;86:197–283. doi: 10.1016/s0074-7696(08)60180-1. [DOI] [PubMed] [Google Scholar]