Ribosomal binding to the internal ribosomal entry site of classical swine fever virus (original) (raw)

Abstract

Most eukaryotic mRNAs require the cap-binding complex elF4F for efficient initiation of translation, which occurs as a result of ribosomal scanning from the capped 5' end of the mRNA to the initiation codon. A few cellular and viral mRNAs are translated by a cap and end-independent mechanism known as internal ribosomal entry. The internal ribosome entry site (IRES) of classical swine fever virus (CSFV) is approximately 330 nt long, highly structured, and mediates internal initiation of translation with no requirement for elF4F by recruiting a ribosomal 43S preinitiation complex directly to the initiation codon. The key interaction in this process is the direct binding of ribosomal 40S subunits to the IRES to form a stable binary complex in which the initiation codon is positioned precisely in the ribosomal P site. Here, we report the results of analyses done using enzymatic footprinting and mutagenesis of the IRES to identify structural components in it responsible for precise binding of the ribosome. Residues flanking the initiation codon and extending from nt 363-391, a distance equivalent to the length of the 40S subunit mRNA-binding cleft, were strongly protected from RNase cleavage, as were nucleotides in the adjacent pseudoknot and in the more distal subdomain IIId1. Ribosomal binding and IRES-mediated initiation were abrogated by disruption of helix 1b of the pseudoknot and very severely reduced by mutation of the protected residues in IIId1 and by disruption of domain IIIa. These observations are consistent with a model for IRES function in which binding of the region flanking the initiation codon to the decoding region of the ribosome is determined by multiple additional interactions between the 40S subunit and the IRES.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown E. A., Zhang H., Ping L. H., Lemon S. M. Secondary structure of the 5' nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 1992 Oct 11;20(19):5041–5045. doi: 10.1093/nar/20.19.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Browning K. S., Leung D. W., Clark J. M., Jr Protection of satellite tobacco necrosis virus ribonucleic acid by wheat germ 40S and 80S ribosomes. Biochemistry. 1980 May 13;19(10):2276–2283. doi: 10.1021/bi00551a044. [DOI] [PubMed] [Google Scholar]
  3. Buratti E., Tisminetzky S., Zotti M., Baralle F. E. Functional analysis of the interaction between HCV 5'UTR and putative subunits of eukaryotic translation initiation factor eIF3. Nucleic Acids Res. 1998 Jul 1;26(13):3179–3187. doi: 10.1093/nar/26.13.3179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chon S. K., Perez D. R., Donis R. O. Genetic analysis of the internal ribosome entry segment of bovine viral diarrhea virus. Virology. 1998 Nov 25;251(2):370–382. doi: 10.1006/viro.1998.9425. [DOI] [PubMed] [Google Scholar]
  5. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Honda M., Brown E. A., Lemon S. M. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA. 1996 Oct;2(10):955–968. [PMC free article] [PubMed] [Google Scholar]
  7. Jackson R. J., Kaminski A. Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA. 1995 Dec;1(10):985–1000. [PMC free article] [PubMed] [Google Scholar]
  8. Johannes G., Carter M. S., Eisen M. B., Brown P. O., Sarnow P. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13118–13123. doi: 10.1073/pnas.96.23.13118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johannes G., Sarnow P. Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. RNA. 1998 Dec;4(12):1500–1513. doi: 10.1017/s1355838298981080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kamoshita N., Tsukiyama-Kohara K., Kohara M., Nomoto A. Genetic analysis of internal ribosomal entry site on hepatitis C virus RNA: implication for involvement of the highly ordered structure and cell type-specific transacting factors. Virology. 1997 Jun 23;233(1):9–18. doi: 10.1006/viro.1997.8600. [DOI] [PubMed] [Google Scholar]
  11. Kieft J. S., Zhou K., Jubin R., Murray M. G., Lau J. Y., Doudna J. A. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol. 1999 Sep 24;292(3):513–529. doi: 10.1006/jmbi.1999.3095. [DOI] [PubMed] [Google Scholar]
  12. Kierzek R., Burkard M. E., Turner D. H. Thermodynamics of single mismatches in RNA duplexes. Biochemistry. 1999 Oct 26;38(43):14214–14223. doi: 10.1021/bi991186l. [DOI] [PubMed] [Google Scholar]
  13. Kolk M. H., van der Graaf M., Wijmenga S. S., Pleij C. W., Heus H. A., Hilbers C. W. NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Science. 1998 Apr 17;280(5362):434–438. doi: 10.1126/science.280.5362.434. [DOI] [PubMed] [Google Scholar]
  14. Kolupaeva V. G., Hellen C. U., Shatsky I. N. Structural analysis of the interaction of the pyrimidine tract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus and foot-and-mouth disease virus RNAs. RNA. 1996 Dec;2(12):1199–1212. [PMC free article] [PubMed] [Google Scholar]
  15. Kolupaeva V. G., Pestova T. V., Hellen C. U. An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J Virol. 2000 Jul;74(14):6242–6250. doi: 10.1128/jvi.74.14.6242-6250.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kolupaeva V. G., Pestova T. V., Hellen C. U., Shatsky I. N. Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J Biol Chem. 1998 Jul 17;273(29):18599–18604. doi: 10.1074/jbc.273.29.18599. [DOI] [PubMed] [Google Scholar]
  17. Kozak M. Nucleotide sequences of 5'-terminal ribosome-protected initiation regions from two reovirus messages. Nature. 1977 Sep 29;269(5627):391–394. doi: 10.1038/269390a0. [DOI] [PubMed] [Google Scholar]
  18. Kozak M., Shatkin A. J. Sequences and properties of two ribosome binding sites from the small size class of reovirus messenger RNA. J Biol Chem. 1977 Oct 10;252(19):6895–6908. [PubMed] [Google Scholar]
  19. Legon S. Characterization of the ribosome-protected regions of 125I-labelled rabbit globin messenger RNA. J Mol Biol. 1976 Sep 5;106(1):37–53. doi: 10.1016/0022-2836(76)90299-0. [DOI] [PubMed] [Google Scholar]
  20. Merrick W. C. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992 Jun;56(2):291–315. doi: 10.1128/mr.56.2.291-315.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Odreman-Macchioli F. E., Tisminetzky S. G., Zotti M., Baralle F. E., Buratti E. Influence of correct secondary and tertiary RNA folding on the binding of cellular factors to the HCV IRES. Nucleic Acids Res. 2000 Feb 15;28(4):875–885. doi: 10.1093/nar/28.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pause A., Méthot N., Svitkin Y., Merrick W. C., Sonenberg N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J. 1994 Mar 1;13(5):1205–1215. doi: 10.1002/j.1460-2075.1994.tb06370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pelletier J., Flynn M. E., Kaplan G., Racaniello V., Sonenberg N. Mutational analysis of upstream AUG codons of poliovirus RNA. J Virol. 1988 Dec;62(12):4486–4492. doi: 10.1128/jvi.62.12.4486-4492.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pestova T. V., Borukhov S. I., Hellen C. U. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature. 1998 Aug 27;394(6696):854–859. doi: 10.1038/29703. [DOI] [PubMed] [Google Scholar]
  25. Pestova T. V., Hellen C. U. Internal initiation of translation of bovine viral diarrhea virus RNA. Virology. 1999 Jun 5;258(2):249–256. doi: 10.1006/viro.1999.9741. [DOI] [PubMed] [Google Scholar]
  26. Pestova T. V., Hellen C. U., Shatsky I. N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol. 1996 Dec;16(12):6859–6869. doi: 10.1128/mcb.16.12.6859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pestova T. V., Lomakin I. B., Lee J. H., Choi S. K., Dever T. E., Hellen C. U. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature. 2000 Jan 20;403(6767):332–335. doi: 10.1038/35002118. [DOI] [PubMed] [Google Scholar]
  28. Pestova T. V., Shatsky I. N., Fletcher S. P., Jackson R. J., Hellen C. U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 1998 Jan 1;12(1):67–83. doi: 10.1101/gad.12.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pestova T. V., Shatsky I. N., Hellen C. U. Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol Cell Biol. 1996 Dec;16(12):6870–6878. doi: 10.1128/mcb.16.12.6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pilipenko E. V., Pestova T. V., Kolupaeva V. G., Khitrina E. V., Poperechnaya A. N., Agol V. I., Hellen C. U. A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev. 2000 Aug 15;14(16):2028–2045. [PMC free article] [PubMed] [Google Scholar]
  31. Psaridi L., Georgopoulou U., Varaklioti A., Mavromara P. Mutational analysis of a conserved tetraloop in the 5' untranslated region of hepatitis C virus identifies a novel RNA element essential for the internal ribosome entry site function. FEBS Lett. 1999 Jun 18;453(1-2):49–53. doi: 10.1016/s0014-5793(99)00662-6. [DOI] [PubMed] [Google Scholar]
  32. Reynolds J. E., Kaminski A., Carroll A. R., Clarke B. E., Rowlands D. J., Jackson R. J. Internal initiation of translation of hepatitis C virus RNA: the ribosome entry site is at the authentic initiation codon. RNA. 1996 Sep;2(9):867–878. [PMC free article] [PubMed] [Google Scholar]
  33. Reynolds J. E., Kaminski A., Kettinen H. J., Grace K., Clarke B. E., Carroll A. R., Rowlands D. J., Jackson R. J. Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J. 1995 Dec 1;14(23):6010–6020. doi: 10.1002/j.1460-2075.1995.tb00289.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rijnbrand R. C., Abbink T. E., Haasnoot P. C., Spaan W. J., Bredenbeek P. J. The influence of AUG codons in the hepatitis C virus 5' nontranslated region on translation and mapping of the translation initiation window. Virology. 1996 Dec 1;226(1):47–56. doi: 10.1006/viro.1996.0626. [DOI] [PubMed] [Google Scholar]
  35. Rijnbrand R., van der Straaten T., van Rijn P. A., Spaan W. J., Bredenbeek P. J. Internal entry of ribosomes is directed by the 5' noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol. 1997 Jan;71(1):451–457. doi: 10.1128/jvi.71.1.451-457.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sizova D. V., Kolupaeva V. G., Pestova T. V., Shatsky I. N., Hellen C. U. Specific interaction of eukaryotic translation initiation factor 3 with the 5' nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J Virol. 1998 Jun;72(6):4775–4782. doi: 10.1128/jvi.72.6.4775-4782.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sundkvist I. C., Staehelin T. Structure and function of free 40 S ribosome subunits: Characterization of initiation factors. J Mol Biol. 1975 Dec 15;99(3):401–418. doi: 10.1016/s0022-2836(75)80135-5. [DOI] [PubMed] [Google Scholar]
  39. Tsukiyama-Kohara K., Iizuka N., Kohara M., Nomoto A. Internal ribosome entry site within hepatitis C virus RNA. J Virol. 1992 Mar;66(3):1476–1483. doi: 10.1128/jvi.66.3.1476-1483.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wang C., Le S. Y., Ali N., Siddiqui A. An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5' noncoding region. RNA. 1995 Jul;1(5):526–537. [PMC free article] [PubMed] [Google Scholar]
  41. Wang C., Sarnow P., Siddiqui A. A conserved helical element is essential for internal initiation of translation of hepatitis C virus RNA. J Virol. 1994 Nov;68(11):7301–7307. doi: 10.1128/jvi.68.11.7301-7307.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wilson J. E., Pestova T. V., Hellen C. U., Sarnow P. Initiation of protein synthesis from the A site of the ribosome. Cell. 2000 Aug 18;102(4):511–520. doi: 10.1016/s0092-8674(00)00055-6. [DOI] [PubMed] [Google Scholar]