The Genetics of Catalase in Drosophila Melanogaster: Isolation and Characterization of Acatalasemic Mutants (original) (raw)
Abstract
Activated oxygen species have been demonstrated to be the important agents in oxygen toxicity by disrupting the structural and functional integrity of cells through lipid peroxidation events, DNA damage and protein inactivation. The biological consequences of free radical damage have long been hypothesized to be a causal agent in many aging-related diseases. Catalase (H(2)O(2):H(2)O(2) oxidoreductase; EC 1.15.1.1) is one of several enzymes involved in the scavenging of oxygen free radicals and free radical derivatives. The structural gene for catalase in Drosophila melanogaster has been localized to region 75D1-76A on chromosome 3L by dosage responses to segmental aneuploidy. This study reports the isolation of a stable deficiency, Df(3L)Cat(DH104)(75C1-2;75F1), that uncovers the catalase locus and the subsequent isolation of six acatalasemic mutants. All catalase mutants are viable under standard culture conditions and recessive lethal mutations within the 75C1-F1 interval have been shown not to affect catalase activity. Two catalase mutations are amorphic while four are hypomorphic alleles of the Cat(+) locus. The lack of intergenic complementation between the six catalase mutations strongly suggests that there is only one functional gene in Drosophila. One acatalesemic mutation was mapped to position 3-47.0 which resides within the catalase dosage sensitive region. While complete loss of catalase activity confers a severe viability effect, residual levels are sufficient to restore viability to wild type levels. These results suggest a threshold effect for viability and offer an explanation for the general lack of phenotypic effects associated with the known mammalian acatalasemics.
Full Text
The Full Text of this article is available as a PDF (3.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
- Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
- BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
- Bainbridge S. P., Bownes M. Staging the metamorphosis of Drosophila melanogaster. J Embryol Exp Morphol. 1981 Dec;66:57–80. [PubMed] [Google Scholar]
- Cerutti P. A. Prooxidant states and tumor promotion. Science. 1985 Jan 25;227(4685):375–381. doi: 10.1126/science.2981433. [DOI] [PubMed] [Google Scholar]
- Farr S. B., D'Ari R., Touati D. Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8268–8272. doi: 10.1073/pnas.83.21.8268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinstein R. N., Howard J. B., Braun J. T., Seaholm J. E. Acatalasemic and hypocatalasemic mouse mutants. Genetics. 1966 May;53(5):923–933. doi: 10.1093/genetics/53.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green M. J., Hill H. A. Chemistry of dioxygen. Methods Enzymol. 1984;105:3–22. doi: 10.1016/s0076-6879(84)05004-7. [DOI] [PubMed] [Google Scholar]
- HARMAN D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956 Jul;11(3):298–300. doi: 10.1093/geronj/11.3.298. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984 Apr 1;219(1):1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hassan H. M., Moody C. S. Determination of the mutagenicity of oxygen free radicals using microbial systems. Methods Enzymol. 1984;105:254–263. doi: 10.1016/s0076-6879(84)05033-3. [DOI] [PubMed] [Google Scholar]
- Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. doi: 10.1126/science.3287616. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loewen P. C., Triggs B. L., George C. S., Hrabarchuk B. E. Genetic mapping of katG, a locus that affects synthesis of the bifunctional catalase-peroxidase hydroperoxidase I in Escherichia coli. J Bacteriol. 1985 May;162(2):661–667. doi: 10.1128/jb.162.2.661-667.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lubinsky S., Bewley G. C. Genetics of Catalase in DROSOPHILA MELANOGASTER: Rates of Synthesis and Degradation of the Enzyme in Flies Aneuploid and Euploid for the Structural Gene. Genetics. 1979 Apr;91(4):723–742. doi: 10.1093/genetics/91.4.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Nelson D. P., Kiesow L. A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H 2 O 2 solutions in the UV). Anal Biochem. 1972 Oct;49(2):474–478. doi: 10.1016/0003-2697(72)90451-4. [DOI] [PubMed] [Google Scholar]
- Schott D. R., Baldwin M. C., Finnerty V. Molybdenum hydroxylases in Drosophila. III. Further characterization of the low xanthine dehydrogenase gene. Biochem Genet. 1986 Aug;24(7-8):509–527. doi: 10.1007/BF00504332. [DOI] [PubMed] [Google Scholar]
- Shaffer J. B., Sutton R. B., Bewley G. C. Isolation of a cDNA clone for murine catalase and analysis of an acatalasemic mutant. J Biol Chem. 1987 Sep 25;262(27):12908–12911. [PubMed] [Google Scholar]
- TAKAHARA S. Progressive oral gangrene probably due to lack of catalase in the blood (acatalasaemia); report of nine cases. Lancet. 1952 Dec 6;2(6745):1101–1104. doi: 10.1016/s0140-6736(52)90939-2. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]