An SCL 3' enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors - PubMed (original) (raw)
. 1999 Sep;126(17):3891-904.
doi: 10.1242/dev.126.17.3891.
Affiliations
- PMID: 10433917
- DOI: 10.1242/dev.126.17.3891
An SCL 3' enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors
M Sánchez et al. Development. 1999 Sep.
Abstract
The SCL gene encodes a basic helix-loop-helix transcription factor which is expressed in early haematopoietic progenitors throughout ontogeny and is essential for the normal development of blood and blood vessels. Transgenic studies have characterised spatially distinct 5' enhancers which direct lacZ expression to subdomains of the normal SCL expression pattern, but the same elements failed to produce appropriate haematopoietic expression. We now describe an SCL 3' enhancer with unique properties. It directed lacZ expression in transgenic mice to extra-embryonic mesoderm and subsequently to both endothelial cells and to a subset of blood cells at multiple sites of embryonic haematopoiesis including the yolk sac, para-aortic splanchnopleura and AGM region. The 3' enhancer also targeted expression to haematopoietic progenitors in both foetal liver and adult bone marrow. Purified lacZ(+ )cells were highly enriched for clonogenic myeloid and erythroid progenitors as well as day-12 spleen colony forming units (CFU-S). Within the total gated population from bone marrow, 95% of the myeloid and 90% of the erythroid colony-forming cells were contained in the lacZ(+) fraction, as were 98% of the CFU-S. Activation of the enhancer did not require SCL protein. On the contrary, transgene expression in yolk sacs was markedly increased in an SCL-/- background, suggesting that SCL is subject to negative autoregulation. Alternatively the SCL-/- environment may alter differentiation of extra-embryonic mesoderm and result in an increased number of cells capable of expressing high levels of the transgene. Our data represents the first description of an enhancer that integrates information necessary for expression in developing endothelium and early haematopoietic progenitors at distinct times and sites throughout ontogeny. This enhancer provides a potent tool for the manipulation of haematopoiesis and vasculogenesis in vivo.
Similar articles
- Selective rescue of early haematopoietic progenitors in Scl(-/-) mice by expressing Scl under the control of a stem cell enhancer.
Sánchez MJ, Bockamp EO, Miller J, Gambardella L, Green AR. Sánchez MJ, et al. Development. 2001 Dec;128(23):4815-27. doi: 10.1242/dev.128.23.4815. Development. 2001. PMID: 11731461 - Rescue of the lethal scl(-/-) phenotype by the human SCL locus.
Sinclair AM, Bench AJ, Bloor AJ, Li J, Göttgens B, Stanley ML, Miller J, Piltz S, Hunter S, Nacheva EP, Sanchez MJ, Green AR. Sinclair AM, et al. Blood. 2002 Jun 1;99(11):3931-8. doi: 10.1182/blood.v99.11.3931. Blood. 2002. PMID: 12010791 - Characterization of hematopoietic progenitor cells that express the transcription factor SCL, using a lacZ "knock-in" strategy.
Elefanty AG, Begley CG, Metcalf D, Barnett L, Köntgen F, Robb L. Elefanty AG, et al. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11897-902. doi: 10.1073/pnas.95.20.11897. Proc Natl Acad Sci U S A. 1998. PMID: 9751762 Free PMC article. - The SCL/TAL1 gene: roles in normal and malignant haematopoiesis.
Robb L, Begley CG. Robb L, et al. Bioessays. 1997 Jul;19(7):607-13. doi: 10.1002/bies.950190711. Bioessays. 1997. PMID: 9230693 Review. - The helix-loop-helix gene SCL: implicated in T-cell acute lymphoblastic leukaemia and in normal haematopoietic development.
Robb L, Begley CG. Robb L, et al. Int J Biochem Cell Biol. 1996 Jun;28(6):609-18. doi: 10.1016/1357-2725(96)00006-4. Int J Biochem Cell Biol. 1996. PMID: 8673726 Review.
Cited by
- Genome-wide transcription factor-binding maps reveal cell-specific changes in the regulatory architecture of human HSPCs.
Subramanian S, Thoms JAI, Huang Y, Cornejo-Páramo P, Koch FC, Jacquelin S, Shen S, Song E, Joshi S, Brownlee C, Woll PS, Chacon-Fajardo D, Beck D, Curtis DJ, Yehson K, Antonenas V, O'Brien T, Trickett A, Powell JA, Lewis ID, Pitson SM, Gandhi MK, Lane SW, Vafaee F, Wong ES, Göttgens B, Alinejad-Rokny H, Wong JWH, Pimanda JE. Subramanian S, et al. Blood. 2023 Oct 26;142(17):1448-1462. doi: 10.1182/blood.2023021120. Blood. 2023. PMID: 37595278 Free PMC article. - Enhancer in cancer pathogenesis and treatment.
Sun Z, Fan J, Dang Y, Zhao Y. Sun Z, et al. Genet Mol Biol. 2023 Aug 4;46(3):e20220313. doi: 10.1590/1678-4685-GMB-2022-0313. eCollection 2023. Genet Mol Biol. 2023. PMID: 37548349 Free PMC article. - Isoforms of the TAL1 transcription factor have different roles in hematopoiesis and cell growth.
Sharma A, Mistriel-Zerbib S, Najar RA, Engal E, Bentata M, Taqatqa N, Dahan S, Cohen K, Jaffe-Herman S, Geminder O, Baker M, Nevo Y, Plaschkes I, Kay G, Drier Y, Berger M, Salton M. Sharma A, et al. PLoS Biol. 2023 Jun 28;21(6):e3002175. doi: 10.1371/journal.pbio.3002175. eCollection 2023 Jun. PLoS Biol. 2023. PMID: 37379322 Free PMC article. - Highly efficient Runx1 enhancer eR1-mediated genetic engineering for fetal, child and adult hematopoietic stem cells.
Koh CP, Bahirvani AG, Wang CQ, Yokomizo T, Ng CEL, Du L, Tergaonkar V, Voon DC, Kitamura H, Hosoi H, Sonoki T, Michelle MMH, Tan LJ, Niibori-Nambu A, Zhang Y, Perkins AS, Hossain Z, Tenen DG, Ito Y, Venkatesh B, Osato M. Koh CP, et al. Gene. 2023 Jan 30;851:147049. doi: 10.1016/j.gene.2022.147049. Epub 2022 Nov 13. Gene. 2023. PMID: 36384171 Free PMC article. - Transcriptional regulatory network controlling the ontogeny of hematopoietic stem cells.
Gao P, Chen C, Howell ED, Li Y, Tober J, Uzun Y, He B, Gao L, Zhu Q, Siekmann AF, Speck NA, Tan K. Gao P, et al. Genes Dev. 2020 Jul 1;34(13-14):950-964. doi: 10.1101/gad.338202.120. Epub 2020 Jun 4. Genes Dev. 2020. PMID: 32499402 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous