Microglial activation by components of gram-positive and -negative bacteria: distinct and common routes to the induction of ion channels and cytokines - PubMed (original) (raw)
Microglial activation by components of gram-positive and -negative bacteria: distinct and common routes to the induction of ion channels and cytokines
M Prinz et al. J Neuropathol Exp Neurol. 1999 Oct.
Abstract
Gram-positive Streptococcus pneumoniae is the major pathogen causing lethal meningitis in adults. We used pneumococcal cell walls (PCW) to investigate microglial consequences of a bacterial challenge and to determine the role of serum in the activation process. PCW caused the characteristic induction of an outwardly rectifying K+ channel (IK+(OR)), together with a concomitant suppression of the constitutively expressed inward rectifier K+ current, and evoked the release of tumor necrosis factor-alpha (TNF alpha), interleukin-6 (IL-6), IL-12, KC, macrophage inflammatory protein (MIP) 1alpha and MIP-2. Serum presence strongly facilitated the PCW effects, similarly as observed for lipopolysaccharide (LPS) from gram-negative Escherichia coli. The inflammatory cytokine, interferon-gamma (IFNgamma) induced the same electrophysiological changes, but independent of serum. Recombinant LPS binding protein (LBP) could partially replace serum activity in LPS stimulations. In contrast, neither LBP nor an antibody-mediated blockade of the LPS receptor, CD14 had significant influences on PCW-inducible changes. Cell surface interactions and cofactor involvement in microglial activation by gram-positive bacteria are thus distinct from the mechanisms employed by LPS. Moreover, tyrphostin AG126, a protein kinase inhibitor that prevents activation of the mitogen-activated protein kinase, p42MAPK (ERK2), potently blocked the PCW-stimulated cytokine release while having only a limited effect on LPS-inducible cytokines. In contrast, AG126 did not influence IK+(OR) inductions. This indicates that PCW recruits more than 1 intracellular signaling pathway to trigger the various responses and that different bacterial agents signal through both common and individual routes during microglial activation.
Similar articles
- Induction of potassium channels in mouse brain microglia: cells acquire responsiveness to pneumococcal cell wall components during late development.
Draheim HJ, Prinz M, Weber JR, Weiser T, Kettenmann H, Hanisch UK. Draheim HJ, et al. Neuroscience. 1999;89(4):1379-90. doi: 10.1016/s0306-4522(98)00407-2. Neuroscience. 1999. PMID: 10362322 - The protein tyrosine kinase inhibitor AG126 prevents the massive microglial cytokine induction by pneumococcal cell walls.
Hanisch UK, Prinz M, Angstwurm K, Häusler KG, Kann O, Kettenmann H, Weber JR. Hanisch UK, et al. Eur J Immunol. 2001 Jul;31(7):2104-15. doi: 10.1002/1521-4141(200107)31:7<2104::aid-immu2104>3.0.co;2-3. Eur J Immunol. 2001. PMID: 11449364 - Interferon-gamma differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages.
Häusler KG, Prinz M, Nolte C, Weber JR, Schumann RR, Kettenmann H, Hanisch UK. Häusler KG, et al. Eur J Neurosci. 2002 Dec;16(11):2113-22. doi: 10.1046/j.1460-9568.2002.02287.x. Eur J Neurosci. 2002. PMID: 12473079 - [Progression of lipopolysaccharide signal pathway].
Yang YX, Li GY. Yang YX, et al. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2006 Feb;31(1):141-5. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2006. PMID: 16562697 Review. Chinese. - Systemic inflammation and microglial activation: systematic review of animal experiments.
Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Hoogland IC, et al. J Neuroinflammation. 2015 Jun 6;12:114. doi: 10.1186/s12974-015-0332-6. J Neuroinflammation. 2015. PMID: 26048578 Free PMC article. Review.
Cited by
- Comparing Effects of Transforming Growth Factor β1 on Microglia From Rat and Mouse: Transcriptional Profiles and Potassium Channels.
Lively S, Lam D, Wong R, Schlichter LC. Lively S, et al. Front Cell Neurosci. 2018 May 3;12:115. doi: 10.3389/fncel.2018.00115. eCollection 2018. Front Cell Neurosci. 2018. PMID: 29780305 Free PMC article. - Retinal Organoid Microenvironment Enhanced Bioactivities of Microglia-Like Cells Derived From HiPSCs.
Gao ML, Wang TY, Lin X, Tang C, Li M, Bai ZP, Liu ZC, Chen LJ, Kong QR, Pan SH, Zeng SS, Guo Y, Cai JQ, Huang XF, Zhang J. Gao ML, et al. Invest Ophthalmol Vis Sci. 2024 Oct 1;65(12):19. doi: 10.1167/iovs.65.12.19. Invest Ophthalmol Vis Sci. 2024. PMID: 39392440 Free PMC article. - Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology.
Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, Miller KR, Prokop S, Kettenmann H, Heppner FL. Krabbe G, et al. PLoS One. 2013;8(4):e60921. doi: 10.1371/journal.pone.0060921. Epub 2013 Apr 8. PLoS One. 2013. PMID: 23577177 Free PMC article. - History of Microglia.
Rezaie P, Hanisch UK. Rezaie P, et al. Adv Neurobiol. 2024;37:15-37. doi: 10.1007/978-3-031-55529-9_2. Adv Neurobiol. 2024. PMID: 39207684 - Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger.
Ifuku M, Färber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, Merrino VF, Kita S, Iwamoto T, Komuro I, Wang B, Cheung G, Ishikawa E, Ooboshi H, Bader M, Wada K, Kettenmann H, Noda M. Ifuku M, et al. J Neurosci. 2007 Nov 28;27(48):13065-73. doi: 10.1523/JNEUROSCI.3467-07.2007. J Neurosci. 2007. PMID: 18045900 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous