Changes in cyclin dependent kinase expression and activity accompanying lens fiber cell differentiation - PubMed (original) (raw)

. 1999 Dec;69(6):695-703.

doi: 10.1006/exer.1999.0749.

Affiliations

Changes in cyclin dependent kinase expression and activity accompanying lens fiber cell differentiation

C Y Gao et al. Exp Eye Res. 1999 Dec.

Abstract

Previous studies from this laboratory have shown that differentiating lens fiber cells contain two active cyclin dependent kinases (Cdks), Cdk1 and Cdk5. The present study was undertaken to explore the expression and regulation of six additional members of the Cdk family (Cdk2, Cdk3, Cdk4, Cdk6, Cdk7 and Cdk8) during lens differentiation. Differentiating lens fiber cells were separated from lens epithelial cells by microdissection of developing rat lenses [embryonic day 16 (E16) to postnatal day 8 (P8)] and Cdk expression was assessed by RT-PCR and immunoblotting. Two Cdks (Cdk3 and Cdk6) were not expressed in lens fiber cells or epithelial cells during this developmental period. In the lens epithelium, we detected proteins and mRNAs corresponding to all other Cdks examined (Cdk2, Cdk4, Cdk7, Cdk8) throughout this developmental period. Epithelial cells showed significant Cdk2 activity, which decreased with developmental age, but no significant activity was detected for Cdk4, Cdk7, or Cdk8. Fiber cells contained all four Cdk proteins and the corresponding Cdk mRNAs except for Cdk2 mRNA. None of the Cdks examined showed significant kinase activity in fiber cells. Immunoprecipitates of Cdk2 and Cdk4 from fiber cells contained p57(kip2), supporting the view that this Cdk inhibitor blocks the activity of these Cdks in lens fibers. In contrast, p57(kip2)did not co-immunoprecipitate with Cdk5 from lens fibers. These findings suggest that the differential affinity of p57(kip2)for members of the Cdk family may provide a mechanism for specific regulation of individual Cdks during fiber cell differentiation.

Copyright 1999 Academic Press.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources