Solution structure of Cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches - PubMed (original) (raw)
. 2000 Feb 4;295(5):1211-23.
doi: 10.1006/jmbi.1999.3421.
Affiliations
- PMID: 10653698
- DOI: 10.1006/jmbi.1999.3421
Solution structure of Cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches
S Rüdisser et al. J Mol Biol. 2000.
Abstract
The solution structure of a 22 nt RNA hairpin and its complex with Co(NH(3))(6)(3+) bound to the GAAA tetraloop has been determined by NMR spectroscopy. Co(NH(3))(6)(3+) has a similar geometry to Mg(H(2)O)(6)(2+) and can be used as a probe for binding sites of completely solvated magnesium ions. The hairpin contains tandem G.A mismatches, similar to the P5abc region of a group I intron, and is closed by a GAAA tetraloop. The tandem G.A mismatches are imino hydrogen bonded in contrast with the sheared G.A mismatches found in a different context in the crystal structure of the P4-P6 domain. Chemical shift changes of the imino protons upon titration of the RNA hairpin with Mg(2+) and with Co(NH(3))(6)(3+) were used to identify ion-binding sites. Paramagnetic resonance broadening upon titration with Mn(2+) was also used. The titration curves gave dissociation binding constants for the magnesium ions in the millimolar range, similar to the binding in the major groove of RNA at tandem G.U base-pairs. Although the largest chemical shift change occurred at an imino proton of one of the G.A base-pairs, no nuclear Overhauser enhancement cross-peaks between the cobalt ligand and neighboring RNA protons were seen, presumably due to the high mobility of the Co(NH(3))(6)(3+) at this site. Nuclear Overhauser enhancement cross-peaks between Co(NH(3))(6)(3+) and the GAAA tetraloop were observed, which allowed the determination of the structure of the tetraloop binding site. The Co(NH(3))(6)(3+) is bound in the major groove of the GAAA tetraloop with hydrogen bonds to guanine base N7 and to phosphate oxygen atoms of the tetraloop.
Copyright 2000 Academic Press.
Similar articles
- Structure and thermodynamics of metal binding in the P5 helix of a group I intron ribozyme.
Colmenarejo G, Tinoco I Jr. Colmenarejo G, et al. J Mol Biol. 1999 Jul 2;290(1):119-35. doi: 10.1006/jmbi.1999.2867. J Mol Biol. 1999. PMID: 10388561 - Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
Gonzalez RL Jr, Tinoco I Jr. Gonzalez RL Jr, et al. J Mol Biol. 1999 Jun 25;289(5):1267-82. doi: 10.1006/jmbi.1999.2841. J Mol Biol. 1999. PMID: 10373367 - Solution structure of a metal-binding site in the major groove of RNA complexed with cobalt (III) hexammine.
Kieft JS, Tinoco I Jr. Kieft JS, et al. Structure. 1997 May 15;5(5):713-21. doi: 10.1016/s0969-2126(97)00225-6. Structure. 1997. PMID: 9195889 - An RNA folding motif: GNRA tetraloop-receptor interactions.
Fiore JL, Nesbitt DJ. Fiore JL, et al. Q Rev Biophys. 2013 Aug;46(3):223-64. doi: 10.1017/S0033583513000048. Epub 2013 Aug 5. Q Rev Biophys. 2013. PMID: 23915736 Review. - Probing the kinetic and thermodynamic consequences of the tetraloop/tetraloop receptor monovalent ion-binding site in P4-P6 RNA by smFRET.
Bisaria N, Herschlag D. Bisaria N, et al. Biochem Soc Trans. 2015 Apr;43(2):172-8. doi: 10.1042/BST20140268. Biochem Soc Trans. 2015. PMID: 25849913 Free PMC article. Review.
Cited by
- Structure of an internal loop motif with three consecutive U•U mismatches from stem-loop 1 in the 3'-UTR of the SARS-CoV-2 genomic RNA.
Vögele J, Duchardt-Ferner E, Bains JK, Knezic B, Wacker A, Sich C, Weigand JE, Šponer J, Schwalbe H, Krepl M, Wöhnert J. Vögele J, et al. Nucleic Acids Res. 2024 Jun 24;52(11):6687-6706. doi: 10.1093/nar/gkae349. Nucleic Acids Res. 2024. PMID: 38783391 Free PMC article. - Theoretical investigation on the ground state properties of the hexaamminecobalt(iii) and nitro-nitrito linkage isomerism in pentaamminecobalt(iii) in vacuo.
Muya JT, Chung H, Lee SU. Muya JT, et al. RSC Adv. 2018 Jan 16;8(6):3328-3342. doi: 10.1039/c7ra11603a. eCollection 2018 Jan 12. RSC Adv. 2018. PMID: 35541161 Free PMC article. - Specific phosphorothioate substitution within domain 6 of a group II intron ribozyme leads to changes in local structure and metal ion binding.
Erat MC, Besic E, Oberhuber M, Johannsen S, Sigel RKO. Erat MC, et al. J Biol Inorg Chem. 2018 Jan;23(1):167-177. doi: 10.1007/s00775-017-1519-3. Epub 2017 Dec 7. J Biol Inorg Chem. 2018. PMID: 29218637 - What Can Human-Guided Simulations Bring to RNA Folding?
Mazzanti L, Doutreligne S, Gageat C, Derreumaux P, Taly A, Baaden M, Pasquali S. Mazzanti L, et al. Biophys J. 2017 Jul 25;113(2):302-312. doi: 10.1016/j.bpj.2017.05.047. Epub 2017 Jun 22. Biophys J. 2017. PMID: 28648754 Free PMC article. - Applications of NMR to structure determination of RNAs large and small.
Barnwal RP, Yang F, Varani G. Barnwal RP, et al. Arch Biochem Biophys. 2017 Aug 15;628:42-56. doi: 10.1016/j.abb.2017.06.003. Epub 2017 Jun 16. Arch Biochem Biophys. 2017. PMID: 28600200 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials