Identification of novel purine and pyrimidine cyclin-dependent kinase inhibitors with distinct molecular interactions and tumor cell growth inhibition profiles - PubMed (original) (raw)
. 2000 Jul 27;43(15):2797-804.
doi: 10.1021/jm990628o.
F T Boyle, A H Calvert, N J Curtin, J A Endicott, E F Garman, A E Gibson, B T Golding, S Grant, R J Griffin, P Jewsbury, L N Johnson, A M Lawrie, D R Newell, M E Noble, E A Sausville, R Schultz, W Yu
Affiliations
- PMID: 10956187
- DOI: 10.1021/jm990628o
Identification of novel purine and pyrimidine cyclin-dependent kinase inhibitors with distinct molecular interactions and tumor cell growth inhibition profiles
C E Arris et al. J Med Chem. 2000.
Abstract
Substituted guanines and pyrimidines were tested as inhibitors of cyclin B1/CDK1 and cyclin A3/CDK2 and soaked into crystals of monomeric CDK2. O6-Cyclohexylmethylguanine (NU2058) was a competitive inhibitor of CDK1 and CDK2 with respect to ATP (Ki values: CDK1, 5 +/- 1 microM; CDK2, 12 +/- 3 microM) and formed a triplet of hydrogen bonds (i.e., NH-9 to Glu 81, N-3 to Leu 83, and 2-NH2 to Leu 83). The triplet of hydrogen bonding and CDK inhibition was reproduced by 2,6-diamino-4-cyclohexylmethyloxy-5-nitrosopyrimidine (NU6027, Ki values: CDK1, 2.5 +/- 0.4 microM; CDK2, 1.3 +/- 0.2 microM). Against human tumor cells, NU2058 and NU6027 were growth inhibitory in vitro (mean GI50 values of 13 +/- 7 microM and 10 +/- 6 microM, respectively), with a pattern of sensitivity distinct from flavopiridol and olomoucine. These CDK inhibition and chemosensitivity data indicate that the distinct mode of binding of NU2058 and NU6027 has direct consequences for enzyme and cell growth inhibition.
Similar articles
- 4-Alkoxy-2,6-diaminopyrimidine derivatives: inhibitors of cyclin dependent kinases 1 and 2.
Mesguiche V, Parsons RJ, Arris CE, Bentley J, Boyle FT, Curtin NJ, Davies TG, Endicott JA, Gibson AE, Golding BT, Griffin RJ, Jewsbury P, Johnson LN, Newell DR, Noble ME, Wang LZ, Hardcastle IR. Mesguiche V, et al. Bioorg Med Chem Lett. 2003 Jan 20;13(2):217-22. doi: 10.1016/s0960-894x(02)00884-3. Bioorg Med Chem Lett. 2003. PMID: 12482427 - Probing the ATP ribose-binding domain of cyclin-dependent kinases 1 and 2 with O(6)-substituted guanine derivatives.
Gibson AE, Arris CE, Bentley J, Boyle FT, Curtin NJ, Davies TG, Endicott JA, Golding BT, Grant S, Griffin RJ, Jewsbury P, Johnson LN, Mesguiche V, Newell DR, Noble ME, Tucker JA, Whitfield HJ. Gibson AE, et al. J Med Chem. 2002 Aug 1;45(16):3381-93. doi: 10.1021/jm020056z. J Med Chem. 2002. PMID: 12139449 - Aloisines, a new family of CDK/GSK-3 inhibitors. SAR study, crystal structure in complex with CDK2, enzyme selectivity, and cellular effects.
Mettey Y, Gompel M, Thomas V, Garnier M, Leost M, Ceballos-Picot I, Noble M, Endicott J, Vierfond JM, Meijer L. Mettey Y, et al. J Med Chem. 2003 Jan 16;46(2):222-36. doi: 10.1021/jm020319p. J Med Chem. 2003. PMID: 12519061 - Chemical and biological profile of dual Cdk1 and Cdk2 inhibitors.
Ruetz S, Fabbro D, Zimmermann J, Meyer T, Gray N. Ruetz S, et al. Curr Med Chem Anticancer Agents. 2003 Jan;3(1):1-14. doi: 10.2174/1568011033353605. Curr Med Chem Anticancer Agents. 2003. PMID: 12678910 Review. - X-ray crystallographic studies of CDK2, a basis for cyclin-dependent kinase inhibitor design in anti-cancer drug research.
Furet P. Furet P. Curr Med Chem Anticancer Agents. 2003 Jan;3(1):15-23. doi: 10.2174/1568011033353515. Curr Med Chem Anticancer Agents. 2003. PMID: 12678911 Review.
Cited by
- Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining.
Zhang T, Jiang S, Li T, Liu Y, Zhang Y. Zhang T, et al. ACS Omega. 2023 Jul 5;8(28):25165-25184. doi: 10.1021/acsomega.3c02243. eCollection 2023 Jul 18. ACS Omega. 2023. PMID: 37483233 Free PMC article. - Targeting CDK1 in cancer: mechanisms and implications.
Wang Q, Bode AM, Zhang T. Wang Q, et al. NPJ Precis Oncol. 2023 Jun 13;7(1):58. doi: 10.1038/s41698-023-00407-7. NPJ Precis Oncol. 2023. PMID: 37311884 Free PMC article. Review. - Antiproliferative Activity of (-)-Isopulegol-based 1,3-Oxazine, 1,3-Thiazine and 2,4-Diaminopyrimidine Derivatives.
Bamou FZ, Le TM, Tayeb BA, Tahaei SAS, Minorics R, Zupkó I, Szakonyi Z. Bamou FZ, et al. ChemistryOpen. 2022 Oct;11(10):e202200169. doi: 10.1002/open.202200169. ChemistryOpen. 2022. PMID: 36200514 Free PMC article. - Progress towards a clinically-successful ATR inhibitor for cancer therapy.
Barnieh FM, Loadman PM, Falconer RA. Barnieh FM, et al. Curr Res Pharmacol Drug Discov. 2021 Feb 5;2:100017. doi: 10.1016/j.crphar.2021.100017. eCollection 2021. Curr Res Pharmacol Drug Discov. 2021. PMID: 34909652 Free PMC article. Review. - From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis.
Rankine-Wilson LI, Shapira T, Sao Emani C, Av-Gay Y. Rankine-Wilson LI, et al. Microbiology (Reading). 2021 Apr;167(4):001041. doi: 10.1099/mic.0.001041. Microbiology (Reading). 2021. PMID: 33826491 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Chemical Information
Molecular Biology Databases
Miscellaneous