Defining promiscuous MHC class II helper T-cell epitopes for the HER2/neu tumor antigen - PubMed (original) (raw)
. 2000 Sep 15;60(18):5228-36.
Affiliations
- PMID: 11016652
Defining promiscuous MHC class II helper T-cell epitopes for the HER2/neu tumor antigen
H Kobayashi et al. Cancer Res. 2000.
Abstract
It is accepted that both helper and CTLs play a critical role in immune antitumor responses. Thus, the design of effective immune-based therapies for cancer relies in the identification of relevant tumor-associated antigens (TAAs) capable of eliciting strong helper and cytotoxic T-cell responses against tumor cells. The product of the HER2/neu oncogene is considered as a prototype TAA, because it is found overexpressed in a large variety of malignancies, whereas normal cells only produce low levels of this product. Several cytotoxic T-cell epitopes for HER2/neu have been identified that enable the design of peptide-based therapeutic vaccines for tumors expressing this TAA. Nevertheless, it is expected that inclusion of peptide epitopes capable of eliciting HER2/neu-specific T helper responses into these vaccines may enhance their effectiveness in the clinic. We describe here a strategy to identify helper T-cell epitopes for HER2/neu that focuses on peptides predicted to bind to numerous histocompatibility alleles (promiscuous epitopes), which would encourage their use in therapeutic vaccines for the general cancer patient population. Following this approach, we successfully identified several peptides that elicited T helper (CD4+) proliferative responses to peptides derived from HER2/neu. Most of the T-cell responses appeared to reflect a low affinity for antigen, which could be the result of immune tolerance because HER2/neu is expressed in low levels in normal cells and possibly including lymphocytes and monocytes. Interestingly, one of these peptides, HER2(883), was recognized by T cells in the context of either HLA-DR1, HLA-DR4, HLA-DR52, and HLA-DR53, indicating a high degree of histocompatibility promiscuity. Furthermore, T cells that reacted with peptide HER2(883) could also recognize antigen-presenting cells that process HER2/neu recombinant protein. These results may be relevant for the design of more effective therapeutic vaccines for tumors expressing the HER2/neu oncogene product.
Similar articles
- Defining MHC class II T helper epitopes for WT1 tumor antigen.
Kobayashi H, Nagato T, Aoki N, Sato K, Kimura S, Tateno M, Celis E. Kobayashi H, et al. Cancer Immunol Immunother. 2006 Jul;55(7):850-60. doi: 10.1007/s00262-005-0071-0. Epub 2005 Oct 12. Cancer Immunol Immunother. 2006. PMID: 16220325 Free PMC article. - Peptide HER2(776-788) represents a naturally processed broad MHC class II-restricted T cell epitope.
Sotiriadou R, Perez SA, Gritzapis AD, Sotiropoulou PA, Echner H, Heinzel S, Mamalaki A, Pawelec G, Voelter W, Baxevanis CN, Papamichail M. Sotiriadou R, et al. Br J Cancer. 2001 Nov 16;85(10):1527-34. doi: 10.1054/bjoc.2001.2089. Br J Cancer. 2001. PMID: 11720440 Free PMC article. - Immunogenic HER-2/neu peptides as tumor vaccines.
Baxevanis CN, Sotiriadou NN, Gritzapis AD, Sotiropoulou PA, Perez SA, Cacoullos NT, Papamichail M. Baxevanis CN, et al. Cancer Immunol Immunother. 2006 Jan;55(1):85-95. doi: 10.1007/s00262-005-0692-3. Epub 2005 Oct 27. Cancer Immunol Immunother. 2006. PMID: 15948002 Free PMC article. Review. - Peptide epitope identification for tumor-reactive CD4 T cells.
Kobayashi H, Celis E. Kobayashi H, et al. Curr Opin Immunol. 2008 Apr;20(2):221-7. doi: 10.1016/j.coi.2008.04.011. Epub 2008 May 20. Curr Opin Immunol. 2008. PMID: 18499419 Free PMC article. Review.
Cited by
- An in silico epitope-based peptide vaccine design against the 2019-nCoV.
Durojaye OA, Mushiana T, Cosmas S, Ibiang GO, Ibiang MO. Durojaye OA, et al. Egypt J Med Hum Genet. 2020;21(1):35. doi: 10.1186/s43042-020-00071-7. Epub 2020 Jul 27. Egypt J Med Hum Genet. 2020. PMID: 38624351 Free PMC article. No abstract available. - Brachyury-targeted immunotherapy combined with gemcitabine against head and neck cancer.
Yamaki H, Kono M, Wakisaka R, Komatsuda H, Kumai T, Hayashi R, Sato R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Kishibe K, Takahara M, Hayashi T, Kobayashi H, Katada A. Yamaki H, et al. Cancer Immunol Immunother. 2023 Aug;72(8):2799-2812. doi: 10.1007/s00262-023-03460-0. Epub 2023 May 12. Cancer Immunol Immunother. 2023. PMID: 37173455 Free PMC article. - Activated T cell therapy targeting glioblastoma cancer stem cells.
Miyaguchi K, Wang H, Black KL, Shiao SL, Wang R, Yu JS. Miyaguchi K, et al. Sci Rep. 2023 Jan 5;13(1):196. doi: 10.1038/s41598-022-27184-w. Sci Rep. 2023. PMID: 36604465 Free PMC article. - Mitogen-activated protein kinase inhibition augments the T cell response against HOXB7-expressing tumor through human leukocyte antigen upregulation.
Komatsuda H, Wakisaka R, Kono M, Kumai T, Hayashi R, Yamaki H, Sato R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Takahara M, Katada A, Kobayashi H. Komatsuda H, et al. Cancer Sci. 2023 Feb;114(2):399-409. doi: 10.1111/cas.15619. Epub 2022 Nov 28. Cancer Sci. 2023. PMID: 36285482 Free PMC article. - Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor immunotherapy for head and neck squamous cell carcinoma.
Kono M, Komatsuda H, Yamaki H, Kumai T, Hayashi R, Wakisaka R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Kishibe K, Takahara M, Katada A, Hayashi T, Kobayashi H, Harabuchi Y. Kono M, et al. Oncoimmunology. 2022 Jan 3;11(1):2021619. doi: 10.1080/2162402X.2021.2021619. eCollection 2022. Oncoimmunology. 2022. PMID: 35003900 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Research Materials
Miscellaneous