Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA - PubMed (original) (raw)
. 2000 Nov 2;408(6808):86-9.
doi: 10.1038/35040556.
B J Reinhart, F Slack, M Q Martindale, M I Kuroda, B Maller, D C Hayward, E E Ball, B Degnan, P Müller, J Spring, A Srinivasan, M Fishman, J Finnerty, J Corbo, M Levine, P Leahy, E Davidson, G Ruvkun
Affiliations
- PMID: 11081512
- DOI: 10.1038/35040556
Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA
A E Pasquinelli et al. Nature. 2000.
Abstract
Two small RNAs regulate the timing of Caenorhabditis elegans development. Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA, and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs. Here we have detected let-7 RNAs of approximately 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.
Comment in
- Evolutionary biology. Small but mighty timekeepers.
Adoutte A. Adoutte A. Nature. 2000 Nov 2;408(6808):37-8. doi: 10.1038/35040669. Nature. 2000. PMID: 11081491 No abstract available. - Great expectations of small RNAs.
Schuldt A. Schuldt A. Nat Rev Mol Cell Biol. 2010 Oct;11(10):676. doi: 10.1038/nrm2987. Nat Rev Mol Cell Biol. 2010. PMID: 20861869 No abstract available.
Similar articles
- The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. Reinhart BJ, et al. Nature. 2000 Feb 24;403(6772):901-6. doi: 10.1038/35002607. Nature. 2000. PMID: 10706289 - The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor.
Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. Slack FJ, et al. Mol Cell. 2000 Apr;5(4):659-69. doi: 10.1016/s1097-2765(00)80245-2. Mol Cell. 2000. PMID: 10882102 - Misexpression of the Caenorhabditis elegans miRNA let-7 is sufficient to drive developmental programs.
Hayes GD, Ruvkun G. Hayes GD, et al. Cold Spring Harb Symp Quant Biol. 2006;71:21-7. doi: 10.1101/sqb.2006.71.018. Cold Spring Harb Symp Quant Biol. 2006. PMID: 17381276 - Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression.
Banerjee D, Slack F. Banerjee D, et al. Bioessays. 2002 Feb;24(2):119-29. doi: 10.1002/bies.10046. Bioessays. 2002. PMID: 11835276 Review. - Control of developmental timing by micrornas and their targets.
Pasquinelli AE, Ruvkun G. Pasquinelli AE, et al. Annu Rev Cell Dev Biol. 2002;18:495-513. doi: 10.1146/annurev.cellbio.18.012502.105832. Epub 2002 Apr 2. Annu Rev Cell Dev Biol. 2002. PMID: 12142272 Review.
Cited by
- Two intrinsic timing mechanisms set start and end times for dendritic arborization of a nociceptive neuron.
Suzuki N, Zou Y, Sun H, Eichel K, Shao M, Shih M, Shen K, Chang C. Suzuki N, et al. Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2210053119. doi: 10.1073/pnas.2210053119. Epub 2022 Nov 2. Proc Natl Acad Sci U S A. 2022. PMID: 36322763 Free PMC article. - The stem cell-specific protein TRIM71 inhibits maturation and activity of the pro-differentiation miRNA let-7 via two independent molecular mechanisms.
Torres Fernández LA, Mitschka S, Ulas T, Weise S, Dahm K, Becker M, Händler K, Beyer M, Windhausen J, Schultze JL, Kolanus W. Torres Fernández LA, et al. RNA. 2021 May 11;27(7):805-28. doi: 10.1261/rna.078696.121. Online ahead of print. RNA. 2021. PMID: 33975917 Free PMC article. - MicroRNAs in inner ear biology and pathogenesis.
Patel M, Hu BH. Patel M, et al. Hear Res. 2012 May;287(1-2):6-14. doi: 10.1016/j.heares.2012.03.008. Epub 2012 Mar 29. Hear Res. 2012. PMID: 22484222 Free PMC article. Review. - Evidence of transfer of miRNAs from the diet to the blood still inconclusive.
Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D, Gonzalez-Villasana V, Rodríguez-Padilla C, Reséndez-Pérez D. Mar-Aguilar F, et al. PeerJ. 2020 Sep 17;8:e9567. doi: 10.7717/peerj.9567. eCollection 2020. PeerJ. 2020. PMID: 32995073 Free PMC article. - Lin28: primal regulator of growth and metabolism in stem cells.
Shyh-Chang N, Daley GQ. Shyh-Chang N, et al. Cell Stem Cell. 2013 Apr 4;12(4):395-406. doi: 10.1016/j.stem.2013.03.005. Cell Stem Cell. 2013. PMID: 23561442 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases