Human dendritic cells require multiple activation signals for the efficient generation of tumor antigen-specific T lymphocytes - PubMed (original) (raw)

Human dendritic cells require multiple activation signals for the efficient generation of tumor antigen-specific T lymphocytes

R Lapointe et al. Eur J Immunol. 2000 Nov.

Free article

Abstract

Dendritic cells (DC) are specialized cells of the immune system responsible for the initiation and regulation of both cellular and humoral responses. DC function is highly dependent on their level of maturation. In this study, we postulated that full DC maturation would require a combination of activating signals. When cultured monocyte-derived DC received stimulation with CD40 ligand (CD40L) and lipopolysaccharide (LPS) together, the IL-12 secretion increased 5-60-fold and the IL-10 secretion increased 5-15-fold when compared with either stimulation alone. In addition, poly I.C, a double-stranded RNA analog that mimics viral infection, also synergized with CD40L to stimulate DC to secrete high levels of IL-12 and IL-10. Flow cytometry revealed an up-regulation in the expression of CD80, CD86 and CD83 following activation with a soluble trimeric form of CD40L (CD40Ls) or LPS. However, no further up-regulation was observed when both CD40Ls and LPS were used together compared with a single stimulatory signal, suggesting that there was no correlation between the expression of these markers and the level of IL-12/IL-10 secretion. Finally, specific cytotoxic T lymphocytes (CTL) were generated using DC pulsed with a modified HLA-A2-restricted peptide epitope derived from the melanoma antigen MART-1. DC activated with a combination of CD40Ls and LPS were more efficient in eliciting MART-specific reactivity compared to DC activated with CD40Ls or LPS alone. These results demonstrate that multiple maturational signals have a positive impact on the ability of DC to secrete IL-12 and IL-10 and more importantly, to generate antigen-specific T lymphocytes.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources