Experimental verification of a negative index of refraction - PubMed (original) (raw)
. 2001 Apr 6;292(5514):77-9.
doi: 10.1126/science.1058847.
Affiliations
- PMID: 11292865
- DOI: 10.1126/science.1058847
Experimental verification of a negative index of refraction
R A Shelby et al. Science. 2001.
Abstract
We present experimental scattering data at microwave frequencies on a structured metamaterial that exhibits a frequency band where the effective index of refraction (n) is negative. The material consists of a two-dimensional array of repeated unit cells of copper strips and split ring resonators on interlocking strips of standard circuit board material. By measuring the scattering angle of the transmitted beam through a prism fabricated from this material, we determine the effective n, appropriate to Snell's law. These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root of epsilon.mu for the frequencies where both the permittivity (epsilon) and the permeability (mu) are negative. Configurations of geometrical optical designs are now possible that could not be realized by positive index materials.
Similar articles
- Negative refraction in semiconductor metamaterials.
Hoffman AJ, Alekseyev L, Howard SS, Franz KJ, Wasserman D, Podolskiy VA, Narimanov EE, Sivco DL, Gmachl C. Hoffman AJ, et al. Nat Mater. 2007 Dec;6(12):946-50. doi: 10.1038/nmat2033. Epub 2007 Oct 14. Nat Mater. 2007. PMID: 17934463 - Experimental verification and simulation of negative index of refraction using Snell's law.
Parazzoli CG, Greegor RB, Li K, Koltenbah BE, Tanielian M. Parazzoli CG, et al. Phys Rev Lett. 2003 Mar 14;90(10):107401. doi: 10.1103/PhysRevLett.90.107401. Epub 2003 Mar 11. Phys Rev Lett. 2003. PMID: 12689029 - Three-dimensional optical metamaterial with a negative refractive index.
Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X. Valentine J, et al. Nature. 2008 Sep 18;455(7211):376-9. doi: 10.1038/nature07247. Epub 2008 Aug 11. Nature. 2008. PMID: 18690249 - Experimental determination and numerical simulation of the properties of negative index of refraction materials.
Greegor R, Parazzoli C, Li K, Koltenbah B, Tanielian M. Greegor R, et al. Opt Express. 2003 Apr 7;11(7):688-95. doi: 10.1364/oe.11.000688. Opt Express. 2003. PMID: 19461780 - Snell's law of refraction observed in thermal frontal polymerization.
Pojman JA, Viner V, Binici B, Lavergne S, Winsper M, Golovaty D, Gross L. Pojman JA, et al. Chaos. 2007 Sep;17(3):033125. doi: 10.1063/1.2784386. Chaos. 2007. PMID: 17903007
Cited by
- Improved performance of temperature sensors based on the one-dimensional topological photonic crystals comprising hyperbolic metamaterials.
Elsayed HA, Mohamed AG, El-Sherbeeny AM, Aly AH, Abukhadra MR, Al Zoubi W, Mehaney A. Elsayed HA, et al. Sci Rep. 2024 Aug 26;14(1):19733. doi: 10.1038/s41598-024-69751-3. Sci Rep. 2024. PMID: 39183352 Free PMC article. - Information Metamaterial Systems.
Cui TJ, Li L, Liu S, Ma Q, Zhang L, Wan X, Jiang WX, Cheng Q. Cui TJ, et al. iScience. 2020 Aug 21;23(8):101403. doi: 10.1016/j.isci.2020.101403. Epub 2020 Jul 23. iScience. 2020. PMID: 32777776 Free PMC article. Review. - Space-coiling metamaterials with double negativity and conical dispersion.
Liang Z, Feng T, Lok S, Liu F, Ng KB, Chan CH, Wang J, Han S, Lee S, Li J. Liang Z, et al. Sci Rep. 2013;3:1614. doi: 10.1038/srep01614. Sci Rep. 2013. PMID: 23563489 Free PMC article. - Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region.
Shi L, Harris JT, Fenollosa R, Rodriguez I, Lu X, Korgel BA, Meseguer F. Shi L, et al. Nat Commun. 2013;4:1904. doi: 10.1038/ncomms2934. Nat Commun. 2013. PMID: 23695698 - Dual band metamaterial perfect absorber based on artificial dielectric "molecules".
Liu X, Lan C, Li B, Zhao Q, Zhou J. Liu X, et al. Sci Rep. 2016 Jul 13;6:28906. doi: 10.1038/srep28906. Sci Rep. 2016. PMID: 27406699 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials