cAMP potentiates H(2)O(2)-induced ERK1/2 phosphorylation without the requirement for MEK1/2 phosphorylation - PubMed (original) (raw)

cAMP potentiates H(2)O(2)-induced ERK1/2 phosphorylation without the requirement for MEK1/2 phosphorylation

K Lee et al. Cell Signal. 2001 Sep.

Abstract

In Jurkat T lymphocytes, hydrogen peroxide (H(2)O(2)) potentiates the phosphorylation level of extracellular signal-regulated kinase 1 and 2 (ERK1/2) caused by T cell receptor (TCR) stimulation with anti-CD3 and anti-CD28 or anti-CD3 alone. Submillimolar concentrations of H(2)O(2)-induced phosphorylation of ERK1/2 and MAP/ERK kinase 1 and 2 (MEK1/2) without antigenic stimulation. H(2)O(2) also induced the electrophoretic mobility shift of Lck from 56 to 60 kDa. The MEK inhibitor, PD98059 attenuated ERK1/2 and MEK1/2 phosphorylation, as well as the migration shift of Lck induced by H(2)O(2). The phospholipase C (PLC) inhibitor, U73122, and EGTA reduced the phosphorylation of both ERK1/2 and MEK1/2 induced by H(2)O(2). Interestingly, an increase of intracellular cAMP level with forskolin or 8-(4-chlorophenylthio)-cAMP augmented ERK1/2 phosphorylation by H(2)O(2), while inhibiting MEK1/2 phosphorylation by H(2)O(2). These results demonstrate an alternative pathway that results in augmentation of ERK1/2 phosphorylation without concomitant MEK1/2 phosphorylation in T cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources