Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica - PubMed (original) (raw)
. 1993 Jan-Feb;25(1):51-69.
doi: 10.1007/BF00182129.
Collaborators, Affiliations
- PMID: 11537155
- DOI: 10.1007/BF00182129
Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica
E I Friedmann et al. Microb Ecol. 1993 Jan-Feb.
Abstract
Annual gross productivity of the lichen-dominated cryptoendolithic community was calculated from a computer analysis of photosynthetic response based on laboratory measurements of CO2 exchange and three years (1985-1988) of field nanoclimate data. Photosynthetic optimum increased from -3 to 2 degrees C between irradiance levels of 100 and 1500 micromoles photons m-2 s-1, while the upper compensation point rose from 1 to 17 degrees C. The mean yearly total time available for metabolic activity (temperature above -10 degrees C and moisture present) was 771.3 h for horizontal rock, 421.5 h for northeast-oriented sloped rock, and 1042.2 h for a small depression in horizontal rock (the characteristic site of occasional lichen apothecia). The calculated mean gross productivity value for a horizontal rock was 1215 mg C m-2 y-1, and net photosynthetic gain was 606 mg C m-2 y-1. Net ecosystem productivity (annual accretion of cellular biomass) estimated from long-term events amounted to only about 3 mg C m-2 y-1. The difference between these two values may represent the long-term metabolic costs of the frequent dehydration-rehydration and freezing-thawing cycles or of overwintering, and may account for the leaching of organic substances to the rock. The yearly gross productivity of the cryptoendolithic microbial community of the entire Ross Desert area was estimated at approximately 120,000-180,000 kg C. Of this, 600-900 kg C is in microbial biomass, and much of the rest is soluble compounds that leach into the rocks and possibly percolate to the valleys, providing a source of organic matter for lakes, rivers, and soils.
Similar articles
- Biomass of the cryptoendolithic microbiota from the Antarctic desert.
Vestal JR. Vestal JR. Appl Environ Microbiol. 1988 Apr;54(4):957-9. doi: 10.1128/aem.54.4.957-959.1988. Appl Environ Microbiol. 1988. PMID: 11536603 Free PMC article. - Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert.
Vestal JR. Vestal JR. Appl Environ Microbiol. 1988 Apr;54(4):960-5. doi: 10.1128/aem.54.4.960-965.1988. Appl Environ Microbiol. 1988. PMID: 11536604 Free PMC article. - The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986.
Friedmann EI, McKay CP, Nienow JA. Friedmann EI, et al. Polar Biol. 1987;7:273-87. doi: 10.1007/BF00443945. Polar Biol. 1987. PMID: 11539048 - Primary production of the cryptoendolithic microbiota from the Antarctic Desert.
Vestal JR. Vestal JR. Polarforschung. 1988;58(2-3):193-8. Polarforschung. 1988. PMID: 11538355 Review. - Measurement of CO2 exchange between Boreal forest and the atmosphere.
Black TA, Gaumont-Guay D, Jassal RS, Amiro BD, Jarvis PG, Gower ST, Kelliher FM, Dunn A, Wofsy SC. Black TA, et al. SEB Exp Biol Ser. 2005:151-85. SEB Exp Biol Ser. 2005. PMID: 17633035 Review.
Cited by
- Survivability of Anhydrobiotic Cyanobacteria in Salty Ice: Implications for the Habitability of Icy Worlds.
Cosciotti B, Balbi A, Ceccarelli A, Fagliarone C, Mattei E, Lauro SE, Di Paolo F, Pettinelli E, Billi D. Cosciotti B, et al. Life (Basel). 2019 Nov 22;9(4):86. doi: 10.3390/life9040086. Life (Basel). 2019. PMID: 31766612 Free PMC article. - Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem.
Geyer KM, Takacs-Vesbach CD, Gooseff MN, Barrett JE. Geyer KM, et al. PeerJ. 2017 Jul 25;5:e3377. doi: 10.7717/peerj.3377. eCollection 2017. PeerJ. 2017. PMID: 28761776 Free PMC article. - Microbial Community Responses to Increased Water and Organic Matter in the Arid Soils of the McMurdo Dry Valleys, Antarctica.
Buelow HN, Winter AS, Van Horn DJ, Barrett JE, Gooseff MN, Schwartz E, Takacs-Vesbach CD. Buelow HN, et al. Front Microbiol. 2016 Jul 18;7:1040. doi: 10.3389/fmicb.2016.01040. eCollection 2016. Front Microbiol. 2016. PMID: 27486436 Free PMC article. - Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica.
Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, DiRuggiero J, McKay CP, Whyte LG. Goordial J, et al. ISME J. 2016 Jul;10(7):1613-24. doi: 10.1038/ismej.2015.239. Epub 2016 Jan 19. ISME J. 2016. PMID: 27323892 Free PMC article. - Radiocarbon evidence of active endolithic microbial communities in the hyperarid core of the Atacama Desert.
Ziolkowski LA, Wierzchos J, Davila AF, Slater GF. Ziolkowski LA, et al. Astrobiology. 2013 Jul;13(7):607-16. doi: 10.1089/ast.2012.0854. Epub 2013 Jul 12. Astrobiology. 2013. PMID: 23848470 Free PMC article.
References
- Microb Ecol. 1988;16:271-89 - PubMed
- Appl Environ Microbiol. 1991 Mar;57(3):645-8 - PubMed
- Appl Environ Microbiol. 1991 Mar;57(3):879-81 - PubMed
- Planta. 1966 Jun;68(2):157-66 - PubMed
- Polarforschung. 1988;58(2-3):113-9 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Research Materials