The psychometric function: I. Fitting, sampling, and goodness of fit - PubMed (original) (raw)
. 2001 Nov;63(8):1293-313.
doi: 10.3758/bf03194544.
Affiliations
- PMID: 11800458
- DOI: 10.3758/bf03194544
The psychometric function: I. Fitting, sampling, and goodness of fit
F A Wichmann et al. Percept Psychophys. 2001 Nov.
Abstract
The psychometric function relates an observer's performance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function's parameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (or lapses). We show that failure to account for this can lead to serious biases in estimates of the psychometric function's parameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditional chi2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods.
Similar articles
- The psychometric function: II. Bootstrap-based confidence intervals and sampling.
Wichmann FA, Hill NJ. Wichmann FA, et al. Percept Psychophys. 2001 Nov;63(8):1314-29. doi: 10.3758/bf03194545. Percept Psychophys. 2001. PMID: 11800459 - Measuring, estimating, and understanding the psychometric function: a commentary.
Klein SA. Klein SA. Percept Psychophys. 2001 Nov;63(8):1421-55. doi: 10.3758/bf03194552. Percept Psychophys. 2001. PMID: 11800466 - Bayesian inference for psychometric functions.
Kuss M, Jäkel F, Wichmann FA. Kuss M, et al. J Vis. 2005 May 27;5(5):478-92. doi: 10.1167/5.5.8. J Vis. 2005. PMID: 16097878 - Statistical approaches to identifying lapses in psychometric response data.
Clark TK, Merfeld DM. Clark TK, et al. Psychon Bull Rev. 2021 Oct;28(5):1433-1457. doi: 10.3758/s13423-021-01876-2. Epub 2021 Apr 6. Psychon Bull Rev. 2021. PMID: 33825094 Review. - Applications of Monte Carlo Simulation in Modelling of Biochemical Processes.
Tenekedjiev KI, Nikolova ND, Kolev K. Tenekedjiev KI, et al. In: Mode CJ, editor. Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science [Internet]. Rijeka (HR): InTech; 2011 Feb 28. Chapter 4. In: Mode CJ, editor. Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science [Internet]. Rijeka (HR): InTech; 2011 Feb 28. Chapter 4. PMID: 28045483 Free Books & Documents. Review.
Cited by
- Complementary contributions of non-REM and REM sleep to visual learning.
Tamaki M, Wang Z, Barnes-Diana T, Guo D, Berard AV, Walsh E, Watanabe T, Sasaki Y. Tamaki M, et al. Nat Neurosci. 2020 Sep;23(9):1150-1156. doi: 10.1038/s41593-020-0666-y. Epub 2020 Jul 20. Nat Neurosci. 2020. PMID: 32690968 Free PMC article. - Action and perception are temporally coupled by a common mechanism that leads to a timing misperception.
Pretegiani E, Astefanoaei C, Daye PM, FitzGibbon EJ, Creanga DE, Rufa A, Optican LM. Pretegiani E, et al. J Neurosci. 2015 Jan 28;35(4):1493-504. doi: 10.1523/JNEUROSCI.2054-14.2015. J Neurosci. 2015. PMID: 25632126 Free PMC article. - Compensation for Blur Requires Increase in Field of View and Viewing Time.
Kwon M, Liu R, Chien L. Kwon M, et al. PLoS One. 2016 Sep 13;11(9):e0162711. doi: 10.1371/journal.pone.0162711. eCollection 2016. PLoS One. 2016. PMID: 27622710 Free PMC article. - Adaptable history biases in human perceptual decisions.
Abrahamyan A, Silva LL, Dakin SC, Carandini M, Gardner JL. Abrahamyan A, et al. Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):E3548-57. doi: 10.1073/pnas.1518786113. Epub 2016 Jun 2. Proc Natl Acad Sci U S A. 2016. PMID: 27330086 Free PMC article. - Subjective size perception depends on central visual cortical magnification in human v1.
Schwarzkopf DS, Rees G. Schwarzkopf DS, et al. PLoS One. 2013;8(3):e60550. doi: 10.1371/journal.pone.0060550. Epub 2013 Mar 25. PLoS One. 2013. PMID: 23536915 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources