Chromatin modification and epigenetic reprogramming in mammalian development - PubMed (original) (raw)
Review
doi: 10.1038/nrg887.
Affiliations
- PMID: 12209141
- DOI: 10.1038/nrg887
Review
Chromatin modification and epigenetic reprogramming in mammalian development
En Li. Nat Rev Genet. 2002 Sep.
Abstract
The developmental programme of embryogenesis is controlled by both genetic and epigenetic mechanisms. An emerging theme from recent studies is that the regulation of higher-order chromatin structures by DNA methylation and histone modification is crucial for genome reprogramming during early embryogenesis and gametogenesis, and for tissue-specific gene expression and global gene silencing. Disruptions to chromatin modification can lead to the dysregulation of developmental processes, such as X-chromosome inactivation and genomic imprinting, and to various diseases. Understanding the process of epigenetic reprogramming in development is important for studies of cloning and the clinical application of stem-cell therapy.
Similar articles
- Epigenetic reprogramming in mammals.
Morgan HD, Santos F, Green K, Dean W, Reik W. Morgan HD, et al. Hum Mol Genet. 2005 Apr 15;14 Spec No 1:R47-58. doi: 10.1093/hmg/ddi114. Hum Mol Genet. 2005. PMID: 15809273 Review. - Epigenetic events in mammalian germ-cell development: reprogramming and beyond.
Sasaki H, Matsui Y. Sasaki H, et al. Nat Rev Genet. 2008 Feb;9(2):129-40. doi: 10.1038/nrg2295. Nat Rev Genet. 2008. PMID: 18197165 Review. - [DNA methylation: an epigenetic process of medical importance].
Rodríguez-Dorantes M, Téllez-Ascencio N, Cerbón MA, López M, Cervantes A. Rodríguez-Dorantes M, et al. Rev Invest Clin. 2004 Jan-Feb;56(1):56-71. Rev Invest Clin. 2004. PMID: 15144044 Review. Spanish. - DNA methylation and mammalian epigenetics.
Reik W, Dean W. Reik W, et al. Electrophoresis. 2001 Aug;22(14):2838-43. doi: 10.1002/1522-2683(200108)22:14<2838::AID-ELPS2838>3.0.CO;2-M. Electrophoresis. 2001. PMID: 11565778 Review. - Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer.
Eilertsen KJ, Power RA, Harkins LL, Misica P. Eilertsen KJ, et al. Anim Reprod Sci. 2007 Mar;98(1-2):129-46. doi: 10.1016/j.anireprosci.2006.10.019. Epub 2006 Oct 21. Anim Reprod Sci. 2007. PMID: 17166676 Review.
Cited by
- Multi-omics integration strategies for animal epigenetic studies - A review.
Kim DY, Kim JM. Kim DY, et al. Anim Biosci. 2021 Aug;34(8):1271-1282. doi: 10.5713/ab.21.0042. Epub 2021 Apr 23. Anim Biosci. 2021. PMID: 33902167 Free PMC article. - Epigenetic reprogramming promotes the antiviral action of IFNα in HBV-infected cells.
Gailhouste L, Sudoh M, Qin XY, Watashi K, Wakita T, Ochiya T, Matsuura T, Kojima S, Furutani Y. Gailhouste L, et al. Cell Death Discov. 2021 Jun 2;7(1):130. doi: 10.1038/s41420-021-00515-y. Cell Death Discov. 2021. PMID: 34078875 Free PMC article. - The role of methylation of DNA in environmental adaptation.
Flores KB, Wolschin F, Amdam GV. Flores KB, et al. Integr Comp Biol. 2013 Aug;53(2):359-72. doi: 10.1093/icb/ict019. Epub 2013 Apr 25. Integr Comp Biol. 2013. PMID: 23620251 Free PMC article. - Epigenetics and inheritance of phenotype variation in livestock.
Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. Triantaphyllopoulos KA, et al. Epigenetics Chromatin. 2016 Jul 21;9:31. doi: 10.1186/s13072-016-0081-5. eCollection 2016. Epigenetics Chromatin. 2016. PMID: 27446239 Free PMC article. Review. - Microbial-Derived Metabolites Reflect an Altered Intestinal Microbiota during Catch-Up Growth in Undernourished Neonatal Mice.
Preidis GA, Ajami NJ, Wong MC, Bessard BC, Conner ME, Petrosino JF. Preidis GA, et al. J Nutr. 2016 May;146(5):940-8. doi: 10.3945/jn.115.229179. Epub 2016 Apr 6. J Nutr. 2016. PMID: 27052538 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources