Detecting recent positive selection in the human genome from haplotype structure - PubMed (original) (raw)
. 2002 Oct 24;419(6909):832-7.
doi: 10.1038/nature01140. Epub 2002 Oct 9.
David E Reich, John M Higgins, Haninah Z P Levine, Daniel J Richter, Stephen F Schaffner, Stacey B Gabriel, Jill V Platko, Nick J Patterson, Gavin J McDonald, Hans C Ackerman, Sarah J Campbell, David Altshuler, Richard Cooper, Dominic Kwiatkowski, Ryk Ward, Eric S Lander
Affiliations
- PMID: 12397357
- DOI: 10.1038/nature01140
Detecting recent positive selection in the human genome from haplotype structure
Pardis C Sabeti et al. Nature. 2002.
Abstract
The ability to detect recent natural selection in the human population would have profound implications for the study of human history and for medicine. Here, we introduce a framework for detecting the genetic imprint of recent positive selection by analysing long-range haplotypes in human populations. We first identify haplotypes at a locus of interest (core haplotypes). We then assess the age of each core haplotype by the decay of its association to alleles at various distances from the locus, as measured by extended haplotype homozygosity (EHH). Core haplotypes that have unusually high EHH and a high population frequency indicate the presence of a mutation that rose to prominence in the human gene pool faster than expected under neutral evolution. We applied this approach to investigate selection at two genes carrying common variants implicated in resistance to malaria: G6PD and CD40 ligand. At both loci, the core haplotypes carrying the proposed protective mutation stand out and show significant evidence of selection. More generally, the method could be used to scan the entire genome for evidence of recent positive selection.
Comment in
- Human prehistory: the message from linkage disequilibrium.
Brookfield JF. Brookfield JF. Curr Biol. 2003 Feb 4;13(3):R86-7. doi: 10.1016/s0960-9822(03)00032-0. Curr Biol. 2003. PMID: 12573232
Similar articles
- A whole genome long-range haplotype (WGLRH) test for detecting imprints of positive selection in human populations.
Zhang C, Bailey DK, Awad T, Liu G, Xing G, Cao M, Valmeekam V, Retief J, Matsuzaki H, Taub M, Seielstad M, Kennedy GC. Zhang C, et al. Bioinformatics. 2006 Sep 1;22(17):2122-8. doi: 10.1093/bioinformatics/btl365. Epub 2006 Jul 15. Bioinformatics. 2006. PMID: 16845142 - Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance.
Tishkoff SA, Varkonyi R, Cahinhinan N, Abbes S, Argyropoulos G, Destro-Bisol G, Drousiotou A, Dangerfield B, Lefranc G, Loiselet J, Piro A, Stoneking M, Tagarelli A, Tagarelli G, Touma EH, Williams SM, Clark AG. Tishkoff SA, et al. Science. 2001 Jul 20;293(5529):455-62. doi: 10.1126/science.1061573. Epub 2001 Jun 21. Science. 2001. PMID: 11423617 - A new approach for using genome scans to detect recent positive selection in the human genome.
Tang K, Thornton KR, Stoneking M. Tang K, et al. PLoS Biol. 2007 Jul;5(7):e171. doi: 10.1371/journal.pbio.0050171. Epub 2007 Jun 19. PLoS Biol. 2007. PMID: 17579516 Free PMC article. - On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci.
Garner C, Slatkin M. Garner C, et al. Genet Epidemiol. 2003 Jan;24(1):57-67. doi: 10.1002/gepi.10217. Genet Epidemiol. 2003. PMID: 12508256 Review. - Positive natural selection in the human lineage.
Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES. Sabeti PC, et al. Science. 2006 Jun 16;312(5780):1614-20. doi: 10.1126/science.1124309. Science. 2006. PMID: 16778047 Review.
Cited by
- A Genomic Map of the Effects of Linked Selection in Drosophila.
Elyashiv E, Sattath S, Hu TT, Strutsovsky A, McVicker G, Andolfatto P, Coop G, Sella G. Elyashiv E, et al. PLoS Genet. 2016 Aug 18;12(8):e1006130. doi: 10.1371/journal.pgen.1006130. eCollection 2016 Aug. PLoS Genet. 2016. PMID: 27536991 Free PMC article. - Geographically multifarious phenotypic divergence during speciation.
Gompert Z, Lucas LK, Nice CC, Fordyce JA, Alex Buerkle C, Forister ML. Gompert Z, et al. Ecol Evol. 2013 Mar;3(3):595-613. doi: 10.1002/ece3.445. Epub 2013 Feb 4. Ecol Evol. 2013. PMID: 23532669 Free PMC article. - Evolutionary constraints in the β-globin cluster: the signature of purifying selection at the δ-globin (HBD) locus and its role in developmental gene regulation.
Moleirinho A, Seixas S, Lopes AM, Bento C, Prata MJ, Amorim A. Moleirinho A, et al. Genome Biol Evol. 2013;5(3):559-71. doi: 10.1093/gbe/evt029. Genome Biol Evol. 2013. PMID: 23431002 Free PMC article. - Comparative genomic analyses provide new insights into evolutionary history and conservation genomics of gorillas.
van der Valk T, Jensen A, Caillaud D, Guschanski K. van der Valk T, et al. BMC Ecol Evol. 2024 Jan 26;24(1):14. doi: 10.1186/s12862-023-02195-x. BMC Ecol Evol. 2024. PMID: 38273244 Free PMC article. Review. - COMT and MAO-A polymorphisms and obsessive-compulsive disorder: a family-based association study.
Sampaio AS, Hounie AG, Petribú K, Cappi C, Morais I, Vallada H, do Rosário MC, Stewart SE, Fargeness J, Mathews C, Arnold P, Hanna GL, Richter M, Kennedy J, Fontenelle L, de Bragança Pereira CA, Pauls DL, Miguel EC. Sampaio AS, et al. PLoS One. 2015 Mar 20;10(3):e0119592. doi: 10.1371/journal.pone.0119592. eCollection 2015. PLoS One. 2015. PMID: 25793616 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous