Absolute comparison of simulated and experimental protein-folding dynamics - PubMed (original) (raw)
. 2002 Nov 7;420(6911):102-6.
doi: 10.1038/nature01160. Epub 2002 Oct 20.
Affiliations
- PMID: 12422224
- DOI: 10.1038/nature01160
Absolute comparison of simulated and experimental protein-folding dynamics
Christopher D Snow et al. Nature. 2002.
Abstract
Protein folding is difficult to simulate with classical molecular dynamics. Secondary structure motifs such as alpha-helices and beta-hairpins can form in 0.1-10 micros (ref. 1), whereas small proteins have been shown to fold completely in tens of microseconds. The longest folding simulation to date is a single 1- micro s simulation of the villin headpiece; however, such single runs may miss many features of the folding process as it is a heterogeneous reaction involving an ensemble of transition states. Here, we have used a distributed computing implementation to produce tens of thousands of 5-20-ns trajectories (700 micros) to simulate mutants of the designed mini-protein BBA5. The fast relaxation dynamics these predict were compared with the results of laser temperature-jump experiments. Our computational predictions are in excellent agreement with the experimentally determined mean folding times and equilibrium constants. The rapid folding of BBA5 is due to the swift formation of secondary structure. The convergence of experimentally and computationally accessible timescales will allow the comparison of absolute quantities characterizing in vitro and in silico (computed) protein folding.
Comment in
- Protein folding: with a little help..
Brooks CL 3rd. Brooks CL 3rd. Nature. 2002 Nov 7;420(6911):33-4. doi: 10.1038/420033a. Nature. 2002. PMID: 12422201 No abstract available.
Similar articles
- Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing.
Pande VS, Baker I, Chapman J, Elmer SP, Khaliq S, Larson SM, Rhee YM, Shirts MR, Snow CD, Sorin EJ, Zagrovic B. Pande VS, et al. Biopolymers. 2003 Jan;68(1):91-109. doi: 10.1002/bip.10219. Biopolymers. 2003. PMID: 12579582 - Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing.
Zagrovic B, Snow CD, Shirts MR, Pande VS. Zagrovic B, et al. J Mol Biol. 2002 Nov 8;323(5):927-37. doi: 10.1016/s0022-2836(02)00997-x. J Mol Biol. 2002. PMID: 12417204 - Protein folding kinetics and thermodynamics from atomistic simulation.
Piana S, Lindorff-Larsen K, Shaw DE. Piana S, et al. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17845-50. doi: 10.1073/pnas.1201811109. Epub 2012 Jul 20. Proc Natl Acad Sci U S A. 2012. PMID: 22822217 Free PMC article. - Fast-folding proteins under stress.
Dave K, Gruebele M. Dave K, et al. Cell Mol Life Sci. 2015 Nov;72(22):4273-85. doi: 10.1007/s00018-015-2002-3. Epub 2015 Aug 1. Cell Mol Life Sci. 2015. PMID: 26231095 Free PMC article. Review. - Simulating the peptide folding kinetic related spectra based on the Markov State Model.
Song J, Zhuang W. Song J, et al. Adv Exp Med Biol. 2014;805:199-220. doi: 10.1007/978-3-319-02970-2_9. Adv Exp Med Biol. 2014. PMID: 24446363 Review.
Cited by
- Molecular dynamics simulations suggest the potential toxicity of fluorinated graphene to HP35 protein via unfolding the α-helix structure.
Zou F, Gu Z, Perez-Aguilar JM, Luo Y. Zou F, et al. Sci Rep. 2024 Apr 22;14(1):9168. doi: 10.1038/s41598-024-59780-3. Sci Rep. 2024. PMID: 38649777 Free PMC article. - Effects of altered backbone composition on the folding kinetics and mechanism of an ultrafast-folding protein.
Santhouse JR, Leung JMG, Chong LT, Horne WS. Santhouse JR, et al. Chem Sci. 2023 Dec 4;15(2):675-682. doi: 10.1039/d3sc03976e. eCollection 2024 Jan 3. Chem Sci. 2023. PMID: 38179541 Free PMC article. - Villin headpiece unfolding upon binding to boridene mediated by the "anchoring-perturbation" mechanism.
Luo Y, Gu Z, Liao W, Huang Y, Perez-Aguilar JM, Luo Y, Chen L. Luo Y, et al. iScience. 2023 Nov 30;27(1):108577. doi: 10.1016/j.isci.2023.108577. eCollection 2024 Jan 19. iScience. 2023. PMID: 38170080 Free PMC article. - Efficient and Reliable Data Management for Biomedical Applications.
Pribec I, Hachinger S, Hayek M, Pringle GJ, Brüchle H, Jamitzky F, Mathias G. Pribec I, et al. Methods Mol Biol. 2024;2716:383-403. doi: 10.1007/978-1-0716-3449-3_18. Methods Mol Biol. 2024. PMID: 37702950 - Moderate binding of villin headpiece protein to C3N3 nanosheet reveals the suitable biocompatibility of this nanomaterial.
Luo Y, Gu Z, Perez-Aguilar JM, Liao W, Huang Y, Luo Y. Luo Y, et al. Sci Rep. 2023 Aug 23;13(1):13783. doi: 10.1038/s41598-023-41125-1. Sci Rep. 2023. PMID: 37612444 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous