Electrophysiological and morphological diversity of neurons from the rat subicular complex in vitro - PubMed (original) (raw)

Electrophysiological and morphological diversity of neurons from the rat subicular complex in vitro

L Menendez de la Prida et al. Hippocampus. 2003.

Abstract

We combined whole-cell recordings with Neurobiotin labeling to examine the electrophysiological and morphological properties of neurons from the ventral subicular complex in vitro (including the subicular, presubicular, and parasubicular areas). No a priori morphological sampling criteria were used to select cells. Cells were classified as bursting (IB), regular-spiking (RS), and fast-spiking (FS) according to their firing patterns in response to depolarizing current pulses. A number of cells remained unclassified. We found 54% RS, 26% IB, 11% FS, and 9% unclassified cells out of a total of 131 neurons examined. We also found cells showing intrinsic membrane potential oscillations (MPO) (6%), which represented a subgroup of the unclassified cells. We analyzed several electrophysiological parameters and found that RS and IB cells can be subclassified into two separate subgroups. RS cells were subclassified as tonic and adapting, according to the degree of firing adaptation. Both responded with single spikes to orthodromic stimulation. IB cells were subclassified in two subgroups according to their capacity to fire more than one burst, and showed different responses to orthodromic stimulation. We observed that bursting in these two subgroups appeared to involve both Ca2+ and persistent Na+ components. Both IB and RS cells, as well as MPO neurons, were projecting cells. FS cells were morphologically identified as local circuit interneurons. We also analyzed the spatial distribution of these cell types from the vicinity of CA1 to the parasubicular areas. We conclude that, in contrast to the commonly accepted idea of the subicular complex as a bursting structure, there is a wide electrophysiological variability even within a given cellular group.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources