The lactose operon-controlling elements: a complex paradigm - PubMed (original) (raw)
Review
The lactose operon-controlling elements: a complex paradigm
W S Reznikoff. Mol Microbiol. 1992 Sep.
Abstract
The lactose-controlling elements have been considered to be the simple paradigm of a cis-acting genetic regulatory system, containing a promoter whose activity is modulated by an operator and a catabolite gene activator protein (CAP)-binding site. The reality is considerably more complex. We now know that transcription is negatively regulated as a result of the repressor binding to three binding sites: the operator, a secondary repressor-binding site within the lacZ gene and a tertiary repressor-binding site upstream near lacI. In addition to the promoter, the lac-controlling elements contain five promoter-like elements. The physiological role, if any, of these promoter-like elements is not clear, although three of them can be activated by single base pair changes to give high levels of in vivo expression. Finally, the positive activator protein CAP has been found to bind to a secondary site which is coincident with the operator. No role has been identified for this secondary CAP-DNA complex.
Similar articles
- The mechanism of CAP-lac repressor binding cooperativity at the E. coli lactose promoter.
Vossen KM, Stickle DF, Fried MG. Vossen KM, et al. J Mol Biol. 1996 Jan 12;255(1):44-54. doi: 10.1006/jmbi.1996.0005. J Mol Biol. 1996. PMID: 8568874 - Co-operative interactions between the catabolite gene activator protein and the lac repressor at the lactose promoter.
Hudson JM, Fried MG. Hudson JM, et al. J Mol Biol. 1990 Jul 20;214(2):381-96. doi: 10.1016/0022-2836(90)90188-R. J Mol Biol. 1990. PMID: 2166165 - Crystal structure of the lactose operon repressor and its complexes with DNA and inducer.
Lewis M, Chang G, Horton NC, Kercher MA, Pace HC, Schumacher MA, Brennan RG, Lu P. Lewis M, et al. Science. 1996 Mar 1;271(5253):1247-54. doi: 10.1126/science.271.5253.1247. Science. 1996. PMID: 8638105 - RNA polymerase structure and function at lac operon.
Borukhov S, Lee J. Borukhov S, et al. C R Biol. 2005 Jun;328(6):576-87. doi: 10.1016/j.crvi.2005.03.007. C R Biol. 2005. PMID: 15950164 Review. - Protein-DNA recognition.
Pabo CO, Sauer RT. Pabo CO, et al. Annu Rev Biochem. 1984;53:293-321. doi: 10.1146/annurev.bi.53.070184.001453. Annu Rev Biochem. 1984. PMID: 6236744 Review.
Cited by
- Feedback regulation of Lac repressor expression in Escherichia coli.
Oehler S. Oehler S. J Bacteriol. 2009 Aug;191(16):5301-3. doi: 10.1128/JB.00427-09. Epub 2009 Jun 5. J Bacteriol. 2009. PMID: 19502396 Free PMC article. - A robust CRISPR interference gene repression system in Vibrio parahaemolyticus.
Jiang T, Li Y, Hong W, Lin M. Jiang T, et al. Arch Microbiol. 2023 Dec 26;206(1):41. doi: 10.1007/s00203-023-03770-y. Arch Microbiol. 2023. PMID: 38147133 Free PMC article. - Prokaryotic genome regulation: a revolutionary paradigm.
Ishihama A. Ishihama A. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(9):485-508. doi: 10.2183/pjab.88.485. Proc Jpn Acad Ser B Phys Biol Sci. 2012. PMID: 23138451 Free PMC article. Review. - Measuring cis-regulatory energetics in living cells using allelic manifolds.
Forcier TL, Ayaz A, Gill MS, Jones D, Phillips R, Kinney JB. Forcier TL, et al. Elife. 2018 Dec 20;7:e40618. doi: 10.7554/eLife.40618. Elife. 2018. PMID: 30570483 Free PMC article. - Internal Promoters and Their Effects on the Transcription of Operon Genes for Epothilone Production in Myxococcus xanthus.
Wang Y, Yue XJ, Yuan SF, Hong Y, Hu WF, Li YZ. Wang Y, et al. Front Bioeng Biotechnol. 2021 Oct 27;9:758561. doi: 10.3389/fbioe.2021.758561. eCollection 2021. Front Bioeng Biotechnol. 2021. PMID: 34778232 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous