The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis - PubMed (original) (raw)
doi: 10.2337/diabetes.54.2.402.
Myriam Aouadi, Leslie Caron, Patrick Even, Nathalie Belmonte, Matthieu Prot, Christian Dani, Paul Hofman, Gilles Pagès, Jacques Pouysségur, Yannick Le Marchand-Brustel, Bernard Binétruy
Affiliations
- PMID: 15677498
- DOI: 10.2337/diabetes.54.2.402
The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis
Frédéric Bost et al. Diabetes. 2005 Feb.
Abstract
Hyperplasia of adipose tissue is critical for the development of obesity, but molecular mechanisms governing normal or pathological recruitment of new adipocytes remain unclear. The extracellular signal-regulated kinase (ERK) pathway plays a pivotal role in many essential cellular functions, such as proliferation and differentiation. Using ERK1(-/-) mice, we investigated the role of this isoform in adipose tissue development. Mice lacking ERK1 have decreased adiposity and fewer adipocytes than wild-type animals. Furthermore, ERK1(-/-) mice challenged with high-fat diet are resistant to obesity, are protected from insulin resistance, and have a higher postprandial metabolic rate. To get insights into cellular mechanisms implicated in reduced adiposity in ERK1(-/-) animals, we analyzed adipocyte differentiation in ERK1(-/-) cells. Compared with wild-type control cells, mouse embryo fibroblasts and cultures of adult preadipocytes isolated from ERK1(-/-) adult animals exhibit impaired adipogenesis. An inhibitor of the ERK pathway does not affect the residual adipogenesis of the ERK1(-/-) cells, suggesting that ERK2 is not implicated in adipocyte differentiation. Our results clearly link ERK1 to the regulation of adipocyte differentiation, adiposity, and high-fat diet-induced obesity. This suggests that a therapeutic approach of obesity targeting specifically the ERK1 isoform and not ERK2 would be of particular interest.
Similar articles
- Genetic demonstration of a redundant role of extracellular signal-regulated kinase 1 (ERK1) and ERK2 mitogen-activated protein kinases in promoting fibroblast proliferation.
Voisin L, Saba-El-Leil MK, Julien C, Frémin C, Meloche S. Voisin L, et al. Mol Cell Biol. 2010 Jun;30(12):2918-32. doi: 10.1128/MCB.00131-10. Epub 2010 Apr 5. Mol Cell Biol. 2010. PMID: 20368360 Free PMC article. - Tpl2 kinase is upregulated in adipose tissue in obesity and may mediate interleukin-1beta and tumor necrosis factor-{alpha} effects on extracellular signal-regulated kinase activation and lipolysis.
Jager J, Grémeaux T, Gonzalez T, Bonnafous S, Debard C, Laville M, Vidal H, Tran A, Gual P, Le Marchand-Brustel Y, Cormont M, Tanti JF. Jager J, et al. Diabetes. 2010 Jan;59(1):61-70. doi: 10.2337/db09-0470. Epub 2009 Oct 6. Diabetes. 2010. PMID: 19808894 Free PMC article. - The role of MAPKs in adipocyte differentiation and obesity.
Bost F, Aouadi M, Caron L, Binétruy B. Bost F, et al. Biochimie. 2005 Jan;87(1):51-6. doi: 10.1016/j.biochi.2004.10.018. Biochimie. 2005. PMID: 15733737 Review. - Pref-1 (preadipocyte factor 1) activates the MEK/extracellular signal-regulated kinase pathway to inhibit adipocyte differentiation.
Kim KA, Kim JH, Wang Y, Sul HS. Kim KA, et al. Mol Cell Biol. 2007 Mar;27(6):2294-308. doi: 10.1128/MCB.02207-06. Epub 2007 Jan 8. Mol Cell Biol. 2007. PMID: 17210639 Free PMC article. - Biochemical and physiological characteristics of fat cell.
Kawada T, Takahashi N, Fushiki T. Kawada T, et al. J Nutr Sci Vitaminol (Tokyo). 2001 Feb;47(1):1-12. doi: 10.3177/jnsv.47.1. J Nutr Sci Vitaminol (Tokyo). 2001. PMID: 11349884 Review.
Cited by
- Regulation of Adipose Tissue Inflammation and Insulin Resistance by MAPK Phosphatase 5.
Zhang Y, Nguyen T, Tang P, Kennedy NJ, Jiao H, Zhang M, Reynolds JM, Jaeschke A, Martin-Orozco N, Chung Y, He WM, Wang C, Jia W, Ge B, Davis RJ, Flavell RA, Dong C. Zhang Y, et al. J Biol Chem. 2015 Jun 12;290(24):14875-83. doi: 10.1074/jbc.M115.660969. Epub 2015 Apr 28. J Biol Chem. 2015. PMID: 25922079 Free PMC article. - ERK1 is important for Th2 differentiation and development of experimental asthma.
Goplen N, Karim Z, Guo L, Zhuang Y, Huang H, Gorska MM, Gelfand E, Pagés G, Pouysségur J, Alam R. Goplen N, et al. FASEB J. 2012 May;26(5):1934-45. doi: 10.1096/fj.11-196477. Epub 2012 Jan 18. FASEB J. 2012. PMID: 22262639 Free PMC article. - The MAPK MEK1/2-ERK1/2 Pathway and Its Implication in Hepatocyte Cell Cycle Control.
Guégan JP, Frémin C, Baffet G. Guégan JP, et al. Int J Hepatol. 2012;2012:328372. doi: 10.1155/2012/328372. Epub 2012 Oct 24. Int J Hepatol. 2012. PMID: 23133759 Free PMC article. - Role of mitogen-activated protein kinase pathways in multifactorial adverse cardiac remodeling associated with metabolic syndrome.
Asrih M, Mach F, Nencioni A, Dallegri F, Quercioli A, Montecucco F. Asrih M, et al. Mediators Inflamm. 2013;2013:367245. doi: 10.1155/2013/367245. Epub 2013 Jan 9. Mediators Inflamm. 2013. PMID: 23365487 Free PMC article. Review. - Mouse resistin modulates adipogenesis and glucose uptake in 3T3-L1 preadipocytes through the ROR1 receptor.
Sánchez-Solana B, Laborda J, Baladrón V. Sánchez-Solana B, et al. Mol Endocrinol. 2012 Jan;26(1):110-27. doi: 10.1210/me.2011-1027. Epub 2011 Nov 10. Mol Endocrinol. 2012. PMID: 22074948 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous