Temozolomide pharmacodynamics in patients with metastatic melanoma: dna damage and activity of repair enzymes O6-alkylguanine alkyltransferase and poly(ADP-ribose) polymerase-1 - PubMed (original) (raw)

Clinical Trial

. 2005 May 1;11(9):3402-9.

doi: 10.1158/1078-0432.CCR-04-2353.

Mark R Middleton, Christopher Jones, Anna Olsen, Ian Hickson, Peter McHugh, Geoffrey P Margison, Gail McGown, Mary Thorncroft, Amanda J Watson, Alan V Boddy, A Hilary Calvert, Adrian L Harris, David R Newell, Nicola J Curtin

Affiliations

Free article

Clinical Trial

Temozolomide pharmacodynamics in patients with metastatic melanoma: dna damage and activity of repair enzymes O6-alkylguanine alkyltransferase and poly(ADP-ribose) polymerase-1

E Ruth Plummer et al. Clin Cancer Res. 2005.

Free article

Abstract

Purpose: Temozolomide, a DNA methylating agent used to treat melanoma, induces DNA damage, which is repaired by O6-alkylguanine alkyltransferase (ATase) and poly(ADP-ribose) polymerase-1 (PARP-1)-dependent base excision repair. The current study was done to define the effect of temozolomide on DNA integrity and relevant repair enzymes as a prelude to a phase I trial of the combination of temozolomide with a PARP inhibitor.

Experimental design: Temozolomide (200 mg/m2 oral administration) was given to 12 patients with metastatic malignant melanoma. Peripheral blood lymphocytes (PBL) were analyzed for PARP activity, DNA single-strand breakage, ATase levels, and DNA methylation. PARP activity was also measured in tumor biopsies from 9 of 12 patients and in PBLs from healthy volunteers.

Results: Temozolomide pharmacokinetics were consistent with previous reports. Temozolomide therapy caused a substantial and sustained elevation of N7-methylguanine levels, a modest and sustained reduction in ATase activity, and a modest and transient increase in DNA strand breaks and PARP activity in PBLs. PARP-1 activity in tumor homogenates was variable (828 +/- 599 pmol PAR monomer/mg protein) and was not consistently affected by temozolomide treatment.

Conclusions: The effect of temozolomide reported here are consistent with those documented in previous studies with temozolomide and similar drug, dacarbazine, demonstrating that a representative patient population was investigated. Furthermore, PARP activity was not inhibited by temozolomide treatment and this newly validated pharmacodynamic assay is therefore suitable for use in a proof-of-principle phase I trial a PARP-1 inhibitor in combination with temozolomide.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources