Transvascular protein transport in mice lacking endothelial caveolae - PubMed (original) (raw)
. 2006 Sep;291(3):H1371-7.
doi: 10.1152/ajpheart.01364.2005. Epub 2006 Feb 24.
Affiliations
- PMID: 16501011
- DOI: 10.1152/ajpheart.01364.2005
Free article
Transvascular protein transport in mice lacking endothelial caveolae
Bert-Inge Rosengren et al. Am J Physiol Heart Circ Physiol. 2006 Sep.
Free article
Abstract
Caveolae are Omega-shaped vesicular structures postulated to play a role in transvascular protein transport. Studies on mice lacking endothelial caveolae, caveolin-1 knockout (Cav-1-KO) mice, indicate increased macromolecular transport rates. This was postulated to be due to the appearance of an alternative pathway. The present study tested whether an alternative pathway had appeared in Cav-1-KO mice. Male Cav-1-KO (n=12) and male control mice (n=13) were intubated and anesthetized using 2% isoflurane. 125I-labeled albumin, 131I-labeled immunoglobulin M (IgM), and polydisperse FITC-Ficoll were administered intravenously. During tracer administration, a 90-min peritoneal dialysis dwell was performed. Clearance of tracers to dialysate and permeability-surface area product for glucose were assessed. Transvascular protein transport was higher in Cav-1-KO compared with control mice. Albumin clearance from plasma to peritoneum was 0.088+/-0.008 microl/min in control and 0.179+/-0.012 microl/min in Cav-1-KO (P=0.001) mice. IgM clearance was 0.049+/-0.003 and 0.083+/-0.010 microl/min in control and Cav-1-KO mice, respectively (P=0.016). Ficoll clearance was increased in Cav-1-KO mice. In conclusion, the lack of caveolae in Cav-1-KO mice resulted in a marked increase in macromolecular transport. A two-pore analysis of the Ficoll clearance data revealed that the higher transport rate in Cav-1-KO mice was not compatible with the appearance of an alternative pathway for macromolecular transport. In contrast, the higher transperitoneal protein and Ficoll clearance is consistent with passive porous transport through an unperturbed two-pore system, presumably at an elevated capillary hydraulic pressure. Alternatively, the data may be explained by reductions in the selectivity of the endothelial glycocalyx, leading to an increased capillary hydraulic conductivity and large solute filtration.
Similar articles
- Unaltered size selectivity of the glomerular filtration barrier in caveolin-1 knockout mice.
Grände G, Rippe C, Rippe A, Rahman A, Swärd K, Rippe B. Grände G, et al. Am J Physiol Renal Physiol. 2009 Aug;297(2):F257-62. doi: 10.1152/ajprenal.00075.2009. Epub 2009 May 27. Am J Physiol Renal Physiol. 2009. PMID: 19474194 - Transvascular passage of macromolecules into the peritoneal cavity of normo- and hypothermic rats in vivo: active or passive transport?
Rosengren BI, Carlsson O, Venturoli D, al Rayyes O, Rippe B. Rosengren BI, et al. J Vasc Res. 2004 Mar-Apr;41(2):123-30. doi: 10.1159/000077131. Epub 2004 Feb 27. J Vasc Res. 2004. PMID: 15010575 - Similarity of permeabilities for Ficoll, pullulan, charge-modified albumin and native albumin across the rat peritoneal membrane.
Asgeirsson D, Axelsson J, Rippe C, Rippe B. Asgeirsson D, et al. Acta Physiol (Oxf). 2009 Aug;196(4):427-33. doi: 10.1111/j.1748-1716.2009.01955.x. Epub 2009 Jan 8. Acta Physiol (Oxf). 2009. PMID: 19141139 - Getting rid of caveolins: phenotypes of caveolin-deficient animals.
Le Lay S, Kurzchalia TV. Le Lay S, et al. Biochim Biophys Acta. 2005 Dec 30;1746(3):322-33. doi: 10.1016/j.bbamcr.2005.06.001. Epub 2005 Jun 23. Biochim Biophys Acta. 2005. PMID: 16019085 Review. - Overcoming key biological barriers to cancer drug delivery and efficacy.
Kim SM, Faix PH, Schnitzer JE. Kim SM, et al. J Control Release. 2017 Dec 10;267:15-30. doi: 10.1016/j.jconrel.2017.09.016. Epub 2017 Sep 14. J Control Release. 2017. PMID: 28917530 Free PMC article. Review.
Cited by
- Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells.
Li HH, Li J, Wasserloos KJ, Wallace C, Sullivan MG, Bauer PM, Stolz DB, Lee JS, Watkins SC, St Croix CM, Pitt BR, Zhang LM. Li HH, et al. PLoS One. 2013 Nov 27;8(11):e81903. doi: 10.1371/journal.pone.0081903. eCollection 2013. PLoS One. 2013. PMID: 24312378 Free PMC article. - Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis.
Strippoli R, Loureiro J, Moreno V, Benedicto I, Pérez Lozano ML, Barreiro O, Pellinen T, Minguet S, Foronda M, Osteso MT, Calvo E, Vázquez J, López Cabrera M, del Pozo MA. Strippoli R, et al. EMBO Mol Med. 2015 Jan;7(1):102-23. doi: 10.15252/emmm.201404127. EMBO Mol Med. 2015. PMID: 25550395 Free PMC article. - Caveolae, caveolins, cavins, and endothelial cell function: new insights.
Sowa G. Sowa G. Front Physiol. 2012 Jan 6;2:120. doi: 10.3389/fphys.2011.00120. eCollection 2012. Front Physiol. 2012. PMID: 22232608 Free PMC article. - Caveola-forming proteins caveolin-1 and PTRF in prostate cancer.
Nassar ZD, Hill MM, Parton RG, Parat MO. Nassar ZD, et al. Nat Rev Urol. 2013 Sep;10(9):529-36. doi: 10.1038/nrurol.2013.168. Epub 2013 Aug 13. Nat Rev Urol. 2013. PMID: 23938946 Review. - Role of Caveolin-1 in Diabetes and Its Complications.
Haddad D, Al Madhoun A, Nizam R, Al-Mulla F. Haddad D, et al. Oxid Med Cell Longev. 2020 Jan 27;2020:9761539. doi: 10.1155/2020/9761539. eCollection 2020. Oxid Med Cell Longev. 2020. PMID: 32082483 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials