Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector - PubMed (original) (raw)
Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector
Trevor D McKee et al. Cancer Res. 2006.
Free article
Abstract
Oncolytic viral therapy provides a promising approach to treat certain human malignancies. These vectors improve on replication-deficient vectors by increasing the viral load within tumors through preferential viral replication within tumor cells. However, the inability to efficiently propagate throughout the entire tumor and infect cells distant from the injection site has limited the capacity of oncolytic viruses to achieve consistent therapeutic responses. Here we show that the spread of the oncolytic herpes simplex virus (HSV) vector MGH2 within the human melanoma Mu89 is limited by the fibrillar collagen in the extracellular matrix. This limitation seems to be size specific as nanoparticles of equivalent size to the virus distribute within tumors to the same extent whereas smaller particles distribute more widely. Due to limited viral penetration, tumor cells in inaccessible regions continue to grow, remaining out of the range of viral infection, and tumor eradication cannot be achieved. Matrix modification with bacterial collagenase coinjection results in a significant improvement in the initial range of viral distribution within the tumor. This results in an extended range of infected tumor cells and improved virus propagation, ultimately leading to enhanced therapeutic outcome. Thus, fibrillar collagen can be a formidable barrier to viral distribution and matrix-modifying treatments can significantly enhance the therapeutic response.
Similar articles
- Oncolytic capacity of attenuated replicative semliki forest virus in human melanoma xenografts in severe combined immunodeficient mice.
Vähä-Koskela MJ, Kallio JP, Jansson LC, Heikkilä JE, Zakhartchenko VA, Kallajoki MA, Kähäri VM, Hinkkanen AE. Vähä-Koskela MJ, et al. Cancer Res. 2006 Jul 15;66(14):7185-94. doi: 10.1158/0008-5472.CAN-05-2214. Cancer Res. 2006. PMID: 16849565 - Enhanced cytotoxicity with a novel system combining the paclitaxel-2'-ethylcarbonate prodrug and an HSV amplicon with an attenuated replication-competent virus, HF10 as a helper virus.
Ishida D, Nawa A, Tanino T, Goshima F, Luo CH, Iwaki M, Kajiyama H, Shibata K, Yamamoto E, Ino K, Tsurumi T, Nishiyama Y, Kikkawa F. Ishida D, et al. Cancer Lett. 2010 Feb 1;288(1):17-27. doi: 10.1016/j.canlet.2009.06.014. Epub 2009 Jul 14. Cancer Lett. 2010. PMID: 19604626 - Histone deacetylase inhibitors augment antitumor efficacy of herpes-based oncolytic viruses.
Otsuki A, Patel A, Kasai K, Suzuki M, Kurozumi K, Chiocca EA, Saeki Y. Otsuki A, et al. Mol Ther. 2008 Sep;16(9):1546-55. doi: 10.1038/mt.2008.155. Epub 2008 Jul 22. Mol Ther. 2008. PMID: 18648350 - [The Advances of Oncolytic Herpes Simplex Virus in Cancer Therapy].
Hao M, Huang C, Xia N. Hao M, et al. Bing Du Xue Bao. 2016 Jul;32(4):516-22. Bing Du Xue Bao. 2016. PMID: 29996042 Review. Chinese. - Herpes simplex virus 1 (HSV-1) for cancer treatment.
Shen Y, Nemunaitis J. Shen Y, et al. Cancer Gene Ther. 2006 Nov;13(11):975-92. doi: 10.1038/sj.cgt.7700946. Epub 2006 Apr 7. Cancer Gene Ther. 2006. PMID: 16604059 Review.
Cited by
- High-Pressure Delivery of Oncolytic Viruses via Needle-Free Injection Preserves Therapeutic Activity.
Said A, Hoang HD, Earl N, Xiang X, Siddiqui N, Côté M, Alain T. Said A, et al. Cancers (Basel). 2023 Nov 30;15(23):5655. doi: 10.3390/cancers15235655. Cancers (Basel). 2023. PMID: 38067359 Free PMC article. - Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
Durymanov MO, Rosenkranz AA, Sobolev AS. Durymanov MO, et al. Theranostics. 2015 Jun 8;5(9):1007-20. doi: 10.7150/thno.11742. eCollection 2015. Theranostics. 2015. PMID: 26155316 Free PMC article. Review. - Development of a regulatable oncolytic herpes simplex virus type 1 recombinant virus for tumor therapy.
Yao F, Murakami N, Bleiziffer O, Zhang P, Akhrameyeva NV, Xu X, Brans R. Yao F, et al. J Virol. 2010 Aug;84(16):8163-71. doi: 10.1128/JVI.00059-10. Epub 2010 Jun 2. J Virol. 2010. PMID: 20519407 Free PMC article. - Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances.
Zheng M, Huang J, Tong A, Yang H. Zheng M, et al. Mol Ther Oncolytics. 2019 Nov 2;15:234-247. doi: 10.1016/j.omto.2019.10.007. eCollection 2019 Dec 20. Mol Ther Oncolytics. 2019. PMID: 31872046 Free PMC article. Review. - Stromal regulation of vessel stability by MMP14 and TGFbeta.
Sounni NE, Dehne K, van Kempen L, Egeblad M, Affara NI, Cuevas I, Wiesen J, Junankar S, Korets L, Lee J, Shen J, Morrison CJ, Overall CM, Krane SM, Werb Z, Boudreau N, Coussens LM. Sounni NE, et al. Dis Model Mech. 2010 May-Jun;3(5-6):317-32. doi: 10.1242/dmm.003863. Epub 2010 Mar 11. Dis Model Mech. 2010. PMID: 20223936 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical