Induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes - PubMed (original) (raw)

Induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes

M E Salvucci et al. Plant Physiol. 1981 Feb.

Abstract

Incubation under water in a 30 C/14-hour or 12 C/10-hour photoperiod caused the CO(2) compensation points of 10 aquatic macrophytes to decrease below 25 or increase above 50 microliters CO(2) per liter, respectively. Submerged and aerial leaves of two amphibious angiosperms (Myriophyllum brasiliense and Proserpinaca palustris) maintained high compensation points when incubated in air but, when the submerged or aerial leaves of Proserpinaca were incubated under water, the compensation points dropped as low as 10. This suggests that, in addition to temperature and photoperiod, some factor associated with submergence regulates the compensation point of aquatic plants. In the high-compensation point plants, photorespiration, as a percentage of net photosynthesis, was equivalent to that in terrestrial C(3) plants. For Hydrilla verticillata, the decreasing CO(2) compensation points (110, 40, and 10) were associated with reduced photorespiration, as indicated by decreased O(2) inhibition, decreased rates of CO(2) evolution into CO(2)-free air, and increased net photosynthetic rates.The decrease in the CO(2) compensation points of Hydrilla, Egeria densa, and Cabomba caroliniana was accompanied by an increase in the activity of phosphoenolpyruvate, but not of ribulose bisphosphate, carboxylase. In Hydrilla, several C(4) enzymes also increased in activity to the following levels (micromoles per gram fresh weight per hour): pyruvate Pi dikinase (35), pyrophosphatase (716), adenylate kinase (525), NAD and NADP malate dehydrogenase (6565 and 30), NAD and NADP malic enzymes (239 and 44), and aspartate and alanine aminotransferases (357 and 85), whereas glycolate oxidase (6) and phosphoglycolate and phosphoglycerate phosphatases (76 and 32) showed no change. Glycolate dehydrogenase and phosphoenolpyruvate carboxykinase were undetectable. The reduced photorespiration in these plants may be due to increased CO(2) fixation via a C(4) acid pathway. However, for three Myriophyllum species, some other mechanism appears operative, as phosphoenolpyruvate carboxylase was not increased in the low compensation point state, and ribulose bisphosphate carboxylase remained the predominant carboxylation enzyme.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Physiol. 1957 Nov;32(6):591-600 - PubMed
    1. Plant Physiol. 1976 Dec;58(6):761-8 - PubMed
    1. Plant Physiol. 1977 Jun;59(6):1133-5 - PubMed
    1. Plant Physiol. 1980 Feb;65(2):331-5 - PubMed
    1. Anal Biochem. 1977 Mar;78(1):66-75 - PubMed

LinkOut - more resources