The pathological response to DNA damage does not contribute to p53-mediated tumour suppression - PubMed (original) (raw)

. 2006 Sep 14;443(7108):214-7.

doi: 10.1038/nature05077. Epub 2006 Sep 6.

Affiliations

The pathological response to DNA damage does not contribute to p53-mediated tumour suppression

M A Christophorou et al. Nature. 2006.

Abstract

The p53 protein has a highly evolutionarily conserved role in metazoans as 'guardian of the genome', mediating cell-cycle arrest and apoptosis in response to genotoxic injury. In large, long-lived animals with substantial somatic regenerative capacity, such as vertebrates, p53 is an important tumour suppressor--an attribute thought to stem directly from its induction of death or arrest in mutant cells with damaged or unstable genomes. Chemotherapy and radiation exposure both induce widespread p53-dependent DNA damage. This triggers potentially lethal pathologies that are generally deemed an unfortunate but unavoidable consequence of the role p53 has in tumour suppression. Here we show, using a mouse model in which p53 status can be reversibly switched in vivo between functional and inactive states, that the p53-mediated pathological response to whole-body irradiation, a prototypical genotoxic carcinogen, is irrelevant for suppression of radiation-induced lymphoma. In contrast, delaying the restoration of p53 function until the acute radiation response has subsided abrogates all of the radiation-induced pathology yet preserves much of the protection from lymphoma. Such protection is absolutely dependent on p19(ARF)--a tumour suppressor induced not by DNA damage, but by oncogenic disruption of the cell cycle.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources