Sequential phosphorylation of tau protein by cAMP-dependent protein kinase and SAPK4/p38delta or JNK2 in the presence of heparin generates the AT100 epitope - PubMed (original) (raw)
Sequential phosphorylation of tau protein by cAMP-dependent protein kinase and SAPK4/p38delta or JNK2 in the presence of heparin generates the AT100 epitope
Hirotaka Yoshida et al. J Neurochem. 2006 Oct.
Free article
Abstract
Microtubule-associated protein tau in a hyperphosphorylated state is the major component of the filamentous lesions that define a number of neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration, Pick's disease, argyrophilic grain disease and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Previous work has established that the phosphorylation-dependent anti-tau antibody AT100 is a specific marker for filamentous tau in adult human brain. Here we have identified protein kinases that generate the AT100 epitope in vitro and have used them, in conjunction with site-directed mutagenesis of tau, to map the epitope. We show that the sequential phosphorylation of recombinant tau by cAMP-dependent protein kinase (PKA) and the stress-activated protein kinases SAPK4/p38delta or JNK2 generated the AT100 epitope and that this required phosphorylation of T212, S214 and T217. Tau protein from newborn, but not adult, mouse brain was weakly labelled by AT100. Phosphorylation by PKA and SAPK4/p38delta abolished the ability of tau to promote microtubule assembly, but failed to influence significantly the heparin-induced assembly of tau into filaments.
Similar articles
- Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation.
Zheng-Fischhöfer Q, Biernat J, Mandelkow EM, Illenberger S, Godemann R, Mandelkow E. Zheng-Fischhöfer Q, et al. Eur J Biochem. 1998 Mar 15;252(3):542-52. doi: 10.1046/j.1432-1327.1998.2520542.x. Eur J Biochem. 1998. PMID: 9546672 - Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38delta at Thr50 promotes microtubule assembly.
Feijoo C, Campbell DG, Jakes R, Goedert M, Cuenda A. Feijoo C, et al. J Cell Sci. 2005 Jan 15;118(Pt 2):397-408. doi: 10.1242/jcs.01655. Epub 2005 Jan 4. J Cell Sci. 2005. PMID: 15632108 - Differential effect of phosphorylation and substrate modulation on tau's ability to promote microtubule growth and nucleation.
Brandt R, Lee G, Teplow DB, Shalloway D, Abdel-Ghany M. Brandt R, et al. J Biol Chem. 1994 Apr 22;269(16):11776-82. J Biol Chem. 1994. PMID: 8163474 - Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer's disease.
Goedert M, Spillantini MG. Goedert M, et al. Biochim Biophys Acta. 2000 Jul 26;1502(1):110-21. doi: 10.1016/s0925-4439(00)00037-5. Biochim Biophys Acta. 2000. PMID: 10899436 Review. - Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies.
Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribé E, Dalfó E, Avila J. Ferrer I, et al. Curr Alzheimer Res. 2005 Jan;2(1):3-18. doi: 10.2174/1567205052772713. Curr Alzheimer Res. 2005. PMID: 15977985 Review.
Cited by
- HS3ST2 expression is critical for the abnormal phosphorylation of tau in Alzheimer's disease-related tau pathology.
Sepulveda-Diaz JE, Alavi Naini SM, Huynh MB, Ouidja MO, Yanicostas C, Chantepie S, Villares J, Lamari F, Jospin E, van Kuppevelt TH, Mensah-Nyagan AG, Raisman-Vozari R, Soussi-Yanicostas N, Papy-Garcia D. Sepulveda-Diaz JE, et al. Brain. 2015 May;138(Pt 5):1339-54. doi: 10.1093/brain/awv056. Epub 2015 Apr 4. Brain. 2015. PMID: 25842390 Free PMC article. - Tau as a biomarker of neurodegenerative diseases.
Schraen-Maschke S, Sergeant N, Dhaenens CM, Bombois S, Deramecourt V, Caillet-Boudin ML, Pasquier F, Maurage CA, Sablonnière B, Vanmechelen E, Buée L. Schraen-Maschke S, et al. Biomark Med. 2008 Aug;2(4):363-84. doi: 10.2217/17520363.2.4.363. Biomark Med. 2008. PMID: 20477391 Free PMC article. - The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review.
Reich N, Hölscher C. Reich N, et al. Front Neurosci. 2022 Sep 1;16:970925. doi: 10.3389/fnins.2022.970925. eCollection 2022. Front Neurosci. 2022. PMID: 36117625 Free PMC article. Review. - New Insights into the p38γ and p38δ MAPK Pathways.
Risco A, Cuenda A. Risco A, et al. J Signal Transduct. 2012;2012:520289. doi: 10.1155/2012/520289. Epub 2011 Nov 30. J Signal Transduct. 2012. PMID: 22175015 Free PMC article. - When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease.
D'Mello SR. D'Mello SR. Int J Mol Sci. 2021 May 31;22(11):5911. doi: 10.3390/ijms22115911. Int J Mol Sci. 2021. PMID: 34072862 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous