Identification of genes associated with ovarian cancer metastasis using microarray expression analysis - PubMed (original) (raw)
. 2006 Sep-Oct;16(5):1733-45.
doi: 10.1111/j.1525-1438.2006.00660.x.
H K Dressman, J P Clarke, R A Sayer, M A Martino, J M Cragun, A H Henriott, J Gray, R Sutphen, A Elahi, R S Whitaker, M West, J R Marks, J R Nevins, A Berchuck
Affiliations
- PMID: 17009964
- DOI: 10.1111/j.1525-1438.2006.00660.x
Free article
Identification of genes associated with ovarian cancer metastasis using microarray expression analysis
J M Lancaster et al. Int J Gynecol Cancer. 2006 Sep-Oct.
Free article
Abstract
Although the transition from early- to advanced-stage ovarian cancer is a critical determinant of survival, little is known about the molecular underpinnings of ovarian metastasis. We hypothesize that microarray analysis of global gene expression patterns in primary ovarian cancer and metastatic omental implants can identify genes that underlie the metastatic process in epithelial ovarian cancer. We utilized Affymetrix U95Av2 microarrays to characterize the molecular alterations that underlie omental metastasis from 47 epithelial ovarian cancer samples collected from multiple sites in 20 patients undergoing primary surgical cytoreduction for advanced-stage (IIIC/IV) serous ovarian cancer. Fifty-six genes demonstrated differential expression between ovarian and omental samples (P < 0.01), and twenty of these 56 differentially expressed genes have previously been implicated in metastasis, cell motility, or cytoskeletal function. Ten of the 56 genes are involved in p53 gene pathways. A Bayesian statistical tree analysis was used to identify a 27-gene expression pattern that could accurately predict the site of tumor (ovary versus omentum). This predictive model was evaluated using an external data set. Nine of the 27 predictive genes have previously been shown to be involved in oncogenesis and/or metastasis, and 10/27 genes have been implicated in p53 pathways. Microarray findings were validated by real-time quantitative PCR. We conclude that gene expression patterns that distinguish omental metastasis from primary epithelial ovarian cancer can be identified and that many of the genes have functions that are biologically consistent with a role in oncogenesis, metastasis, and p53 gene networks.
Similar articles
- Gene expression profile analysis identifies metastasis and chemoresistance-associated genes in epithelial ovarian carcinoma cells.
Zhu L, Hu Z, Liu J, Gao J, Lin B. Zhu L, et al. Med Oncol. 2015 Jan;32(1):426. doi: 10.1007/s12032-014-0426-5. Epub 2014 Dec 11. Med Oncol. 2015. PMID: 25502083 Free PMC article. - Gene expression profile analysis in response to α1,2-fucosyl transferase (FUT1) gene transfection in epithelial ovarian carcinoma cells.
Gao S, Zhu L, Feng H, Hu Z, Jin S, Song Z, Liu D, Liu J, Hao Y, Li X, Lin B. Gao S, et al. Tumour Biol. 2016 Sep;37(9):12251-12262. doi: 10.1007/s13277-016-5080-4. Epub 2016 May 30. Tumour Biol. 2016. PMID: 27240592 - Gene-expression profiling in epithelial ovarian cancer.
Konstantinopoulos PA, Spentzos D, Cannistra SA. Konstantinopoulos PA, et al. Nat Clin Pract Oncol. 2008 Oct;5(10):577-87. doi: 10.1038/ncponc1178. Epub 2008 Jul 22. Nat Clin Pract Oncol. 2008. PMID: 18648354 Review. - The omentum and omentectomy in epithelial ovarian cancer: a reappraisal: part II--The role of omentectomy in the staging and treatment of apparent early stage epithelial ovarian cancer.
Arie AB, McNally L, Kapp DS, Teng NN. Arie AB, et al. Gynecol Oncol. 2013 Dec;131(3):784-90. doi: 10.1016/j.ygyno.2013.09.013. Epub 2013 Sep 18. Gynecol Oncol. 2013. PMID: 24056005 Review.
Cited by
- Brain Metastases from Ovarian Cancer: Current Evidence in Diagnosis, Treatment, and Prognosis.
Borella F, Bertero L, Morrone A, Gambella A, Bovetti M, Cosma S, Carosso A, Katsaros D, Gemmiti S, Preti M, Valabrega G, Scotto G, Cassoni P, Benedetto C. Borella F, et al. Cancers (Basel). 2020 Aug 4;12(8):2156. doi: 10.3390/cancers12082156. Cancers (Basel). 2020. PMID: 32759682 Free PMC article. Review. - AXL is an essential factor and therapeutic target for metastatic ovarian cancer.
Rankin EB, Fuh KC, Taylor TE, Krieg AJ, Musser M, Yuan J, Wei K, Kuo CJ, Longacre TA, Giaccia AJ. Rankin EB, et al. Cancer Res. 2010 Oct 1;70(19):7570-9. doi: 10.1158/0008-5472.CAN-10-1267. Epub 2010 Sep 21. Cancer Res. 2010. PMID: 20858715 Free PMC article. - Meta-analysis of microarray data identifies GAS6 expression as an independent predictor of poor survival in ovarian cancer.
Buehler M, Tse B, Leboucq A, Jacob F, Caduff R, Fink D, Goldstein DR, Heinzelmann-Schwarz V. Buehler M, et al. Biomed Res Int. 2013;2013:238284. doi: 10.1155/2013/238284. Epub 2013 Jun 27. Biomed Res Int. 2013. PMID: 23878800 Free PMC article. - Role of versican, hyaluronan and CD44 in ovarian cancer metastasis.
Ween MP, Oehler MK, Ricciardelli C. Ween MP, et al. Int J Mol Sci. 2011 Jan 31;12(2):1009-29. doi: 10.3390/ijms12021009. Int J Mol Sci. 2011. PMID: 21541039 Free PMC article. Review. - Gene expression profiling of advanced-stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis.
Yoshihara K, Tajima A, Komata D, Yamamoto T, Kodama S, Fujiwara H, Suzuki M, Onishi Y, Hatae M, Sueyoshi K, Fujiwara H, Kudo Y, Inoue I, Tanaka K. Yoshihara K, et al. Cancer Sci. 2009 Aug;100(8):1421-8. doi: 10.1111/j.1349-7006.2009.01204.x. Epub 2009 May 26. Cancer Sci. 2009. PMID: 19486012 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous