Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration - PubMed (original) (raw)
. 2006 Oct 6;127(1):59-69.
doi: 10.1016/j.cell.2006.09.015.
Affiliations
- PMID: 17018277
- DOI: 10.1016/j.cell.2006.09.015
Free article
Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
Libin Cui et al. Cell. 2006.
Free article
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease caused by a glutamine repeat expansion in huntingtin protein. Transcriptional deregulation and altered energy metabolism have been implicated in HD pathogenesis. We report here that mutant huntingtin causes disruption of mitochondrial function by inhibiting expression of PGC-1alpha, a transcriptional coactivator that regulates several metabolic processes, including mitochondrial biogenesis and respiration. Mutant huntingtin represses PGC-1alpha gene transcription by associating with the promoter and interfering with the CREB/TAF4-dependent transcriptional pathway critical for the regulation of PGC-1alpha gene expression. Crossbreeding of PGC-1alpha knockout (KO) mice with HD knockin (KI) mice leads to increased neurodegeneration of striatal neurons and motor abnormalities in the HD mice. Importantly, expression of PGC-1alpha partially reverses the toxic effects of mutant huntingtin in cultured striatal neurons. Moreover, lentiviral-mediated delivery of PGC-1alpha in the striatum provides neuroprotection in the transgenic HD mice. These studies suggest a key role for PGC-1alpha in the control of energy metabolism in the early stages of HD pathogenesis.
Comment in
- PGC-1alpha, a new therapeutic target in Huntington's disease?
McGill JK, Beal MF. McGill JK, et al. Cell. 2006 Nov 3;127(3):465-8. doi: 10.1016/j.cell.2006.10.023. Cell. 2006. PMID: 17081970 Review.
Similar articles
- Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington's disease: role on chromatin remodeling at the PGC-1-alpha promoter.
Martin E, Betuing S, Pagès C, Cambon K, Auregan G, Deglon N, Roze E, Caboche J. Martin E, et al. Hum Mol Genet. 2011 Jun 15;20(12):2422-34. doi: 10.1093/hmg/ddr148. Epub 2011 Apr 14. Hum Mol Genet. 2011. PMID: 21493629 Free PMC article. - Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease.
Chaturvedi RK, Hennessey T, Johri A, Tiwari SK, Mishra D, Agarwal S, Kim YS, Beal MF. Chaturvedi RK, et al. Hum Mol Genet. 2012 Aug 1;21(15):3474-88. doi: 10.1093/hmg/dds178. Epub 2012 May 15. Hum Mol Genet. 2012. PMID: 22589249 Free PMC article. - PGC-1alpha, a new therapeutic target in Huntington's disease?
McGill JK, Beal MF. McGill JK, et al. Cell. 2006 Nov 3;127(3):465-8. doi: 10.1016/j.cell.2006.10.023. Cell. 2006. PMID: 17081970 Review. - Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration.
Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton GJ, Bammler TK, Strand AD, Cui L, Beyer RP, Easley CN, Smith AC, Krainc D, Luquet S, Sweet IR, Schwartz MW, La Spada AR. Weydt P, et al. Cell Metab. 2006 Nov;4(5):349-62. doi: 10.1016/j.cmet.2006.10.004. Epub 2006 Oct 19. Cell Metab. 2006. PMID: 17055784 - PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington's disease to Parkinson's disease and beyond.
Tsunemi T, La Spada AR. Tsunemi T, et al. Prog Neurobiol. 2012 May;97(2):142-51. doi: 10.1016/j.pneurobio.2011.10.004. Epub 2011 Nov 9. Prog Neurobiol. 2012. PMID: 22100502 Free PMC article. Review.
Cited by
- Chronic caloric restriction attenuates a loss of sulfatide content in PGC-1α-/- mouse cortex: a potential lipidomic role of PGC-1α in neurodegeneration.
Kiebish MA, Young DM, Lehman JJ, Han X. Kiebish MA, et al. J Lipid Res. 2012 Feb;53(2):273-81. doi: 10.1194/jlr.M020628. Epub 2011 Nov 23. J Lipid Res. 2012. PMID: 22114039 Free PMC article. - A Feed-Forward Circuit of Endogenous PGC-1α and Estrogen Related Receptor α Regulates the Neuronal Electron Transport Chain.
Bakshi R, Mittal S, Liao Z, Scherzer CR. Bakshi R, et al. Parkinsons Dis. 2016;2016:2405176. doi: 10.1155/2016/2405176. Epub 2016 Mar 3. Parkinsons Dis. 2016. PMID: 27088034 Free PMC article. - Neuroinflammation in overnutrition-induced diseases.
Cai D. Cai D. Vitam Horm. 2013;91:195-218. doi: 10.1016/B978-0-12-407766-9.00008-0. Vitam Horm. 2013. PMID: 23374717 Free PMC article. Review. - Fast-to-Slow Transition of Skeletal Muscle Contractile Function and Corresponding Changes in Myosin Heavy and Light Chain Formation in the R6/2 Mouse Model of Huntington's Disease.
Hering T, Braubach P, Landwehrmeyer GB, Lindenberg KS, Melzer W. Hering T, et al. PLoS One. 2016 Nov 7;11(11):e0166106. doi: 10.1371/journal.pone.0166106. eCollection 2016. PLoS One. 2016. PMID: 27820862 Free PMC article. - Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome.
Wang J, Fröhlich H, Torres FB, Silva RL, Poschet G, Agarwal A, Rappold GA. Wang J, et al. Proc Natl Acad Sci U S A. 2022 Feb 22;119(8):e2112852119. doi: 10.1073/pnas.2112852119. Proc Natl Acad Sci U S A. 2022. PMID: 35165191 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials