Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling - PubMed (original) (raw)
Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling
Viacheslav O Nikolaev et al. Circ Res. 2006.
Abstract
Beta(1)- and beta(2)-adrenergic receptors (betaARs) are known to differentially regulate cardiomyocyte contraction and growth. We tested the hypothesis that these differences are attributable to spatial compartmentation of the second messenger cAMP. Using a fluorescent resonance energy transfer (FRET)-based approach, we directly monitored the spatial and temporal distribution of cAMP in adult cardiomyocytes. We developed a new cAMP-FRET sensor (termed HCN2-camps) based on a single cAMP binding domain of the hyperpolarization activated cyclic nucleotide-gated potassium channel 2 (HCN2). Its cytosolic distribution, high dynamic range, and sensitivity make HCN2-camps particularly well suited to monitor subcellular localization of cardiomyocyte cAMP. We generated HCN2-camps transgenic mice and performed single-cell FRET imaging on freshly isolated cardiomyocytes. Whole-cell superfusion with isoproterenol showed a moderate elevation of cAMP. Application of various phosphodiesterase (PDE) inhibitors revealed stringent control of cAMP through PDE4>PDE2>PDE3. The beta(1)AR-mediated cAMP signals were entirely dependent on PDE4 activity, whereas beta(2)AR-mediated cAMP was under control of multiple PDE isoforms. beta(1)AR subtype-specific stimulation yielded approximately 2-fold greater cAMP responses compared with selective beta(2)-subtype stimulation, even on treatment with the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) (DeltaFRET, 17.3+/-1.3% [beta(1)AR] versus 8.8+/-0.4% [beta(2)AR]). Treatment with pertussis toxin to inactivate G(i) did not affect cAMP production. Localized beta(1)AR stimulation generated a cAMP gradient propagating throughout the cell, whereas local beta(2)AR stimulation did not elicit marked cAMP diffusion. Our data reveal that in adult cardiac myocytes, beta(1)ARs induce far-reaching cAMP signals, whereas beta(2)AR-induced cAMP remains locally confined.
Comment in
- FRETting mice shed light on cardiac adrenergic signaling.
DiPilato LM, Zhang J. DiPilato LM, et al. Circ Res. 2006 Nov 10;99(10):1021-3. doi: 10.1161/01.RES.0000250962.61995.cf. Circ Res. 2006. PMID: 17095728 No abstract available.
Similar articles
- Enhanced G(i) signaling selectively negates beta2-adrenergic receptor (AR)--but not beta1-AR-mediated positive inotropic effect in myocytes from failing rat hearts.
Xiao RP, Zhang SJ, Chakir K, Avdonin P, Zhu W, Bond RA, Balke CW, Lakatta EG, Cheng H. Xiao RP, et al. Circulation. 2003 Sep 30;108(13):1633-9. doi: 10.1161/01.CIR.0000087595.17277.73. Epub 2003 Sep 15. Circulation. 2003. PMID: 12975249 - Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice.
Devic E, Xiang Y, Gould D, Kobilka B. Devic E, et al. Mol Pharmacol. 2001 Sep;60(3):577-83. Mol Pharmacol. 2001. PMID: 11502890 - FRETting mice shed light on cardiac adrenergic signaling.
DiPilato LM, Zhang J. DiPilato LM, et al. Circ Res. 2006 Nov 10;99(10):1021-3. doi: 10.1161/01.RES.0000250962.61995.cf. Circ Res. 2006. PMID: 17095728 No abstract available. - Functional localization of cAMP signalling in cardiac myocytes.
Vandecasteele G, Rochais F, Abi-Gerges A, Fischmeister R. Vandecasteele G, et al. Biochem Soc Trans. 2006 Aug;34(Pt 4):484-8. doi: 10.1042/BST0340484. Biochem Soc Trans. 2006. PMID: 16856839 Review. - beta(2)-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts.
Steinberg SF. Steinberg SF. J Mol Cell Cardiol. 2004 Aug;37(2):407-15. doi: 10.1016/j.yjmcc.2004.04.018. J Mol Cell Cardiol. 2004. PMID: 15276011 Review.
Cited by
- Visualization of β-adrenergic receptor dynamics and differential localization in cardiomyocytes.
Bathe-Peters M, Gmach P, Boltz HH, Einsiedel J, Gotthardt M, Hübner H, Gmeiner P, Lohse MJ, Annibale P. Bathe-Peters M, et al. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23):e2101119118. doi: 10.1073/pnas.2101119118. Proc Natl Acad Sci U S A. 2021. PMID: 34088840 Free PMC article. - The ins and outs of adrenergic signaling.
Lohse MJ. Lohse MJ. J Mol Med (Berl). 2015 Sep;93(9):955-62. doi: 10.1007/s00109-015-1323-x. Epub 2015 Jul 23. J Mol Med (Berl). 2015. PMID: 26199112 Review. - β-Adrenergic cAMP signals are predominantly regulated by phosphodiesterase type 4 in cultured adult rat aortic smooth muscle cells.
Zhai K, Hubert F, Nicolas V, Ji G, Fischmeister R, Leblais V. Zhai K, et al. PLoS One. 2012;7(10):e47826. doi: 10.1371/journal.pone.0047826. Epub 2012 Oct 18. PLoS One. 2012. PMID: 23094097 Free PMC article. - Measuring Spatiotemporal cAMP Dynamics Within an Endogenous Signaling Compartment Using FluoSTEP-ICUE.
Hardy JC, Mehta S, Zhang J. Hardy JC, et al. Methods Mol Biol. 2022;2483:351-366. doi: 10.1007/978-1-0716-2245-2_22. Methods Mol Biol. 2022. PMID: 35286687 Free PMC article. - Insights into GPCR pharmacology from the measurement of changes in intracellular cyclic AMP; advantages and pitfalls of differing methodologies.
Hill SJ, Williams C, May LT. Hill SJ, et al. Br J Pharmacol. 2010 Nov;161(6):1266-75. doi: 10.1111/j.1476-5381.2010.00779.x. Br J Pharmacol. 2010. PMID: 21049583 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials