Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread - PubMed (original) (raw)
Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread
Christine Alberti-Segui et al. Cell Microbiol. 2007 Jan.
Abstract
We investigated the role of listeriolysin O (LLO) and the bacterial phospholipases PI-PLC and PC-PLC in cell-to-cell spread of Listeria monocytogenes. We showed that LLO is essential for cell-to-cell spread in primary murine macrophages. Electron micrographs revealed that in the absence of continued LLO expression, bacteria remain trapped in secondary spreading vacuoles having either a double or single membrane. In bacteria lacking PI-PLC and PC-PLC, cessation of LLO expression after initiation of infection resulted in a significant increase in the proportion of bacteria trapped in double-membrane compartments. We propose that the bacterial phospholipases are involved in the dissolution of the inner membrane of the spreading vacuole, yet are not sufficient for disruption of the outer membrane. As a consequence, we identified LLO as a key factor in the disruption of the outer membrane. This model is consistent with the observation that LLO is dispensable for cell-to-cell spread from human macrophages into a cell type in which LLO is not required for vacuolar escape. These data suggest that during human infection, spreading of L. monocytogenes to distant organs is likely to occur even in the absence of LLO expression, and that the bacterial phospholipases may be sufficient to mediate continued cell-to-cell spread.
Similar articles
- Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells.
Gründling A, Gonzalez MD, Higgins DE. Gründling A, et al. J Bacteriol. 2003 Nov;185(21):6295-307. doi: 10.1128/JB.185.21.6295-6307.2003. J Bacteriol. 2003. PMID: 14563864 Free PMC article. - The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells.
Marquis H, Doshi V, Portnoy DA. Marquis H, et al. Infect Immun. 1995 Nov;63(11):4531-4. doi: 10.1128/iai.63.11.4531-4534.1995. Infect Immun. 1995. PMID: 7591098 Free PMC article. - Perturbation of vacuolar maturation promotes listeriolysin O-independent vacuolar escape during Listeria monocytogenes infection of human cells.
Burrack LS, Harper JW, Higgins DE. Burrack LS, et al. Cell Microbiol. 2009 Sep;11(9):1382-98. doi: 10.1111/j.1462-5822.2009.01338.x. Epub 2009 Jun 2. Cell Microbiol. 2009. PMID: 19500109 Free PMC article. - Listeriolysin O: the Swiss army knife of Listeria.
Hamon MA, Ribet D, Stavru F, Cossart P. Hamon MA, et al. Trends Microbiol. 2012 Aug;20(8):360-8. doi: 10.1016/j.tim.2012.04.006. Epub 2012 May 30. Trends Microbiol. 2012. PMID: 22652164 Review. - Multifaceted activity of listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes.
Seveau S. Seveau S. Subcell Biochem. 2014;80:161-95. doi: 10.1007/978-94-017-8881-6_9. Subcell Biochem. 2014. PMID: 24798012 Free PMC article. Review.
Cited by
- Activation of cytosolic phospholipase A2alpha in resident peritoneal macrophages by Listeria monocytogenes involves listeriolysin O and TLR2.
Noor S, Goldfine H, Tucker DE, Suram S, Lenz LL, Akira S, Uematsu S, Girotti M, Bonventre JV, Breuel K, Williams DL, Leslie CC. Noor S, et al. J Biol Chem. 2008 Feb 22;283(8):4744-55. doi: 10.1074/jbc.M709956200. Epub 2007 Dec 14. J Biol Chem. 2008. PMID: 18083708 Free PMC article. - A small-molecule screen identifies the antipsychotic drug pimozide as an inhibitor of Listeria monocytogenes infection.
Lieberman LA, Higgins DE. Lieberman LA, et al. Antimicrob Agents Chemother. 2009 Feb;53(2):756-64. doi: 10.1128/AAC.00607-08. Epub 2008 Nov 17. Antimicrob Agents Chemother. 2009. PMID: 19015342 Free PMC article. - Harnessing Microbial Effectors for Macrophage-Mediated Drug Delivery.
Van Staden ADP, Visser JG, Powrie YSL, Smith C. Van Staden ADP, et al. ACS Omega. 2024 Apr 11;9(16):18260-18272. doi: 10.1021/acsomega.3c10519. eCollection 2024 Apr 23. ACS Omega. 2024. PMID: 38680365 Free PMC article. - Bacterial phospholipases C with dual activity: phosphatidylcholinesterase and sphingomyelinase.
Monturiol-Gross L, Villalta-Romero F, Flores-Díaz M, Alape-Girón A. Monturiol-Gross L, et al. FEBS Open Bio. 2021 Dec;11(12):3262-3275. doi: 10.1002/2211-5463.13320. Epub 2021 Nov 8. FEBS Open Bio. 2021. PMID: 34709730 Free PMC article. Review. - Harnessing Macrophages for Controlled-Release Drug Delivery: Lessons From Microbes.
Visser JG, Van Staden ADP, Smith C. Visser JG, et al. Front Pharmacol. 2019 Jan 25;10:22. doi: 10.3389/fphar.2019.00022. eCollection 2019. Front Pharmacol. 2019. PMID: 30740053 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous