Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance - PubMed (original) (raw)

Comparative Study

doi: 10.1186/1471-2164-8-31.

Ana Conesa, Jose M Colmenero, Manuel Cercos, Francisco Tadeo, Javier Agustí, Enriqueta Alós, Fernando Andres, Guillermo Soler, Javier Brumos, Domingo J Iglesias, Stefan Götz, Francisco Legaz, Xavier Argout, Brigitte Courtois, Patrick Ollitrault, Carole Dossat, Patrick Wincker, Raphael Morillon, Manuel Talon

Affiliations

Comparative Study

Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance

Javier Terol et al. BMC Genomics. 2007.

Abstract

Background: Improvement of Citrus, the most economically important fruit crop in the world, is extremely slow and inherently costly because of the long-term nature of tree breeding and an unusual combination of reproductive characteristics. Aside from disease resistance, major commercial traits in Citrus are improved fruit quality, higher yield and tolerance to environmental stresses, especially salinity.

Results: A normalized full length and 9 standard cDNA libraries were generated, representing particular treatments and tissues from selected varieties (Citrus clementina and C. sinensis) and rootstocks (C. reshni, and C. sinenis x Poncirus trifoliata) differing in fruit quality, resistance to abscission, and tolerance to salinity. The goal of this work was to provide a large expressed sequence tag (EST) collection enriched with transcripts related to these well appreciated agronomical traits. Towards this end, more than 54000 ESTs derived from these libraries were analyzed and annotated. Assembly of 52626 useful sequences generated 15664 putative transcription units distributed in 7120 contigs, and 8544 singletons. BLAST annotation produced significant hits for more than 80% of the hypothetical transcription units and suggested that 647 of these might be Citrus specific unigenes. The unigene set, composed of ~13000 putative different transcripts, including more than 5000 novel Citrus genes, was assigned with putative functions based on similarity, GO annotations and protein domains

Conclusion: Comparative genomics with Arabidopsis revealed the presence of putative conserved orthologs and single copy genes in Citrus and also the occurrence of both gene duplication events and increased number of genes for specific pathways. In addition, phylogenetic analysis performed on the ammonium transporter family and glycosyl transferase family 20 suggested the existence of Citrus paralogs. Analysis of the Citrus gene space showed that the most important metabolic pathways known to affect fruit quality were represented in the unigene set. Overall, the similarity analyses indicated that the sequences of the genes belonging to these varieties and rootstocks were essentially identical, suggesting that the differential behaviour of these species cannot be attributed to major sequence divergences. This Citrus EST assembly contributes both crucial information to discover genes of agronomical interest and tools for genetic and genomic analyses, such as the development of new markers and microarrays.

PubMed Disclaimer

Figures

Figure 1

Figure 1

EST assembly results. A – Distribution of ESTs incontigs. B – Number of contigs containing ESTs from 1 or more cDNA libraries.

Figure 2

Figure 2

BLASTX Annotation. Relationship between the length (bp) and both the number of unigenes producing no hits (black columns) and the average similarity (grey column) with respect the best hits.

Figure 3

Figure 3

Gene Ontology Annotation. A – Intensity of GO annotation. The number of unigenes with GO annotations for each of the main Gene Ontology categories, biological process (BP), molecular function (MF) and cellular component (CC) is shown. The total column includes unigenes with GO terms from the three categories. B – GO annotation in contigs (black columns) and singletons (grey columns). Annotated = sequences with functional GO annotation; NoBLAST = sequences with no BLAST results; NoMapping = sequences that produced BLAST hits without ontology annotations; NoAnnotation = sequences that produced BLAST hits with not significant ontology annotations; Total = total number of analyzed sequences.

Figure 4

Figure 4

Slim GO Annotation of the Citrus unigene set. Grey columns indicate the number of Citrus unigenes included in the different slim GO annotation categories.

Figure 5

Figure 5

Phylogenetic analysis. A – Phylogenetic tree of the ammonium transporter family from A. thaliana and Citrus species. B – Phylogenetic tree of the glycosyltransferase family 20 from A. thaliana and Citrus species. Glycosyltransferase family 19 cluster was collapsed in a black triangle and used as an outside group.

Similar articles

Cited by

References

    1. Ollitrault P, Jacquemond C, Dubois C, Luro F. Citrus. In: Hamon P, Seguin M, Perrier X, Glaszmann X, editor. Genetic diversity of cultivated tropical plants. Montpellier , CIRAD; 2003. pp. 193–197.
    1. The Arabidopsis Genome Initiative AGI. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. doi: 10.1038/35048692. - DOI - PubMed
    1. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome (Oryza sativa L. ssp. indica) Science. 2002;296:79–92. doi: 10.1126/science.1068037. - DOI - PubMed
    1. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) Science. 2002;296:92–100. doi: 10.1126/science.1068275. - DOI - PubMed
    1. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) Science. 2006;313:1596–1604. - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources