Stability and flexibility of epigenetic gene regulation in mammalian development - PubMed (original) (raw)
Review
. 2007 May 24;447(7143):425-32.
doi: 10.1038/nature05918.
Affiliations
- PMID: 17522676
- DOI: 10.1038/nature05918
Review
Stability and flexibility of epigenetic gene regulation in mammalian development
Wolf Reik. Nature. 2007.
Abstract
During development, cells start in a pluripotent state, from which they can differentiate into many cell types, and progressively develop a narrower potential. Their gene-expression programmes become more defined, restricted and, potentially, 'locked in'. Pluripotent stem cells express genes that encode a set of core transcription factors, while genes that are required later in development are repressed by histone marks, which confer short-term, and therefore flexible, epigenetic silencing. By contrast, the methylation of DNA confers long-term epigenetic silencing of particular sequences--transposons, imprinted genes and pluripotency-associated genes--in somatic cells. Long-term silencing can be reprogrammed by demethylation of DNA, and this process might involve DNA repair. It is not known whether any of the epigenetic marks has a primary role in determining cell and lineage commitment during development.
Similar articles
- Epigenetic reprogramming in plant and animal development.
Feng S, Jacobsen SE, Reik W. Feng S, et al. Science. 2010 Oct 29;330(6004):622-7. doi: 10.1126/science.1190614. Science. 2010. PMID: 21030646 Free PMC article. Review. - Genomic imprinting: a mammalian epigenetic discovery model.
Barlow DP. Barlow DP. Annu Rev Genet. 2011;45:379-403. doi: 10.1146/annurev-genet-110410-132459. Epub 2011 Sep 13. Annu Rev Genet. 2011. PMID: 21942369 Review. - Epigenetic asymmetry in the zygote and mammalian development.
Feil R. Feil R. Int J Dev Biol. 2009;53(2-3):191-201. doi: 10.1387/ijdb.082654rf. Int J Dev Biol. 2009. PMID: 19378254 Review. - Imprinting and epigenetic changes in the early embryo.
Weaver JR, Susiarjo M, Bartolomei MS. Weaver JR, et al. Mamm Genome. 2009 Sep-Oct;20(9-10):532-43. doi: 10.1007/s00335-009-9225-2. Epub 2009 Sep 16. Mamm Genome. 2009. PMID: 19760320 Review. - [Evolution of genomic imprinting in mammals: what a zoo!].
Proudhon C, Bourc'his D. Proudhon C, et al. Med Sci (Paris). 2010 May;26(5):497-503. doi: 10.1051/medsci/2010265497. Med Sci (Paris). 2010. PMID: 20510148 Review. French.
Cited by
- Neural Differentiation of Mouse Embryonic Stem Cells-An in vitro Approach to Profile DNA Methylation of Reprogramming Factor Sox2-SRR2.
Batool S, Kayani MA, Valis M, Kuca K. Batool S, et al. Front Genet. 2021 Mar 22;12:641095. doi: 10.3389/fgene.2021.641095. eCollection 2021. Front Genet. 2021. PMID: 33828585 Free PMC article. - Alterations of dendritic cells in sepsis: featured role in immunoparalysis.
Fan X, Liu Z, Jin H, Yan J, Liang HP. Fan X, et al. Biomed Res Int. 2015;2015:903720. doi: 10.1155/2015/903720. Epub 2015 Mar 2. Biomed Res Int. 2015. PMID: 25821827 Free PMC article. Review. - Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice.
Zhang P, Xing C, Rhodes SD, He Y, Deng K, Li Z, He F, Zhu C, Nguyen L, Zhou Y, Chen S, Mohammad KS, Guise TA, Abdel-Wahab O, Xu M, Wang QF, Yang FC. Zhang P, et al. Stem Cell Reports. 2016 Jun 14;6(6):914-925. doi: 10.1016/j.stemcr.2016.04.013. Epub 2016 May 26. Stem Cell Reports. 2016. PMID: 27237378 Free PMC article. - Epigenetics of the failing heart.
Marín-García J, Akhmedov AT. Marín-García J, et al. Heart Fail Rev. 2015 Jul;20(4):435-59. doi: 10.1007/s10741-015-9483-x. Heart Fail Rev. 2015. PMID: 25847519 Review. - DNMT1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis.
Georgia S, Kanji M, Bhushan A. Georgia S, et al. Genes Dev. 2013 Feb 15;27(4):372-7. doi: 10.1101/gad.207001.112. Genes Dev. 2013. PMID: 23431054 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources