Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome - PubMed (original) (raw)
Review
. 2007 Nov;85(11):1175-86.
doi: 10.1007/s00109-007-0221-2. Epub 2007 Jun 23.
Affiliations
- PMID: 17589818
- DOI: 10.1007/s00109-007-0221-2
Review
Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome
Jose G Teodoro et al. J Mol Med (Berl). 2007 Nov.
Abstract
The p53 tumor suppressor protein has long been recognized as the central factor protecting humans from cancer. It has been famously dubbed "the guardian of the genome" due to its ability to respond to genotoxic stress, such as DNA damage and other stress signals, and to protect the genome by inducing a variety of biological responses including DNA repair, cell cycle arrest, and apoptosis. However, the tumor suppressive effects of p53 go far beyond its roles in mediating these three processes. There is growing evidence that p53 also exerts its effects on multiple aspects of tumor formation, including suppression of metastasis and, as summarized in this review, inhibition of new blood vessel development (angiogenesis). The p53 protein has been shown to limit angiogenesis by at least three mechanisms: (1) interfering with central regulators of hypoxia that mediate angiogenesis, (2) inhibiting production of proangiogenic factors, and (3) directly increasing the production of endogenous angiogenesis inhibitors. The combination of these effects allows p53 to efficiently shut down the angiogenic potential of cancer cells. Inactivation of p53, which occurs in approximately half of all tumors, reverses these effects; as a consequence, tumors carrying p53 mutations appear more vascularized and are often more aggressive and correlate with poor prognosis for treatment. Thus, the loss of functional p53 during tumorigenesis likely represents an essential step in the switch to an angiogenic phenotype that is displayed by aggressive tumors.
Similar articles
- Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch.
Giuriato S, Ryeom S, Fan AC, Bachireddy P, Lynch RC, Rioth MJ, van Riggelen J, Kopelman AM, Passegué E, Tang F, Folkman J, Felsher DW. Giuriato S, et al. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16266-71. doi: 10.1073/pnas.0608017103. Epub 2006 Oct 20. Proc Natl Acad Sci U S A. 2006. PMID: 17056717 Free PMC article. - Tumor suppression by p53 is mediated in part by the antiangiogenic activity of endostatin and tumstatin.
Folkman J. Folkman J. Sci STKE. 2006 Sep 26;2006(354):pe35. doi: 10.1126/stke.3542006pe35. Sci STKE. 2006. PMID: 17003465 - The role of DNA damage responses in p53 biology.
Speidel D. Speidel D. Arch Toxicol. 2015 Apr;89(4):501-17. doi: 10.1007/s00204-015-1459-z. Epub 2015 Jan 25. Arch Toxicol. 2015. PMID: 25618545 Review. - Effects of MDM2 inhibitors on vascular endothelial growth factor-mediated tumor angiogenesis in human breast cancer.
Xiong J, Yang Q, Li J, Zhou S. Xiong J, et al. Angiogenesis. 2014 Jan;17(1):37-50. doi: 10.1007/s10456-013-9376-3. Epub 2013 Aug 2. Angiogenesis. 2014. PMID: 23907365 - Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors.
North S, Moenner M, Bikfalvi A. North S, et al. Cancer Lett. 2005 Jan 31;218(1):1-14. doi: 10.1016/j.canlet.2004.08.007. Cancer Lett. 2005. PMID: 15639335 Review.
Cited by
- Roles of lncRNAs related to the p53 network in breast cancer progression.
Song J, Cui Q, Gao J. Song J, et al. Front Oncol. 2024 Oct 16;14:1453807. doi: 10.3389/fonc.2024.1453807. eCollection 2024. Front Oncol. 2024. PMID: 39479021 Free PMC article. Review. - Natural products' antiangiogenic roles in gynecological cancer.
Jia S, Li L, Yu C, Peng F. Jia S, et al. Front Pharmacol. 2024 May 1;15:1353056. doi: 10.3389/fphar.2024.1353056. eCollection 2024. Front Pharmacol. 2024. PMID: 38751791 Free PMC article. Review. - Unveiling the Mechanisms of EGCG-p53 Interactions through Molecular Dynamics Simulations.
Bahena Culhuac E, Bello M. Bahena Culhuac E, et al. ACS Omega. 2024 Apr 23;9(18):20066-20085. doi: 10.1021/acsomega.3c10523. eCollection 2024 May 7. ACS Omega. 2024. PMID: 38737068 Free PMC article. - Understanding the complexity of p53 in a new era of tumor suppression.
Liu Y, Su Z, Tavana O, Gu W. Liu Y, et al. Cancer Cell. 2024 Jun 10;42(6):946-967. doi: 10.1016/j.ccell.2024.04.009. Epub 2024 May 9. Cancer Cell. 2024. PMID: 38729160 Free PMC article. Review. - Glioblastoma Therapy: Past, Present and Future.
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Obrador E, et al. Int J Mol Sci. 2024 Feb 21;25(5):2529. doi: 10.3390/ijms25052529. Int J Mol Sci. 2024. PMID: 38473776 Free PMC article. Review.
References
- J Cell Biol. 1997 Aug 11;138(3):707-17 - PubMed
- Mol Cell Biol. 1994 Sep;14 (9):6264-77 - PubMed
- Trends Mol Med. 2003 Feb;9(2):73-8 - PubMed
- Oncogene. 2004 Jun 24;23(29):4975-83 - PubMed
- Science. 2006 Aug 18;313(5789):968-71 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous