Murine cell lines derived from Pten null prostate cancer show the critical role of PTEN in hormone refractory prostate cancer development - PubMed (original) (raw)
Murine cell lines derived from Pten null prostate cancer show the critical role of PTEN in hormone refractory prostate cancer development
Jing Jiao et al. Cancer Res. 2007.
Abstract
PTEN mutations are among the most frequent genetic alterations found in human prostate cancers. Our previous works suggest that although precancerous lesions were found in Pten heterozygous mice, cancer progression and metastasis only happened when both alleles of Pten were deleted. To understand the molecular mechanisms underlying the role of PTEN in prostate cancer control, we generated two pairs of isogenic, androgen receptor (AR)-positive prostate epithelial lines from intact conditional Pten knock-out mice that are either heterozygous (PTEN-P2 and -P8) or homozygous (PTEN-CaP2 and PTEN-CaP8) for Pten deletion. Further characterization of these cells showed that loss of the second allele of Pten leads to increased anchorage-independent growth in vitro and tumorigenesis in vivo without obvious structural or numerical chromosome changes based on SKY karyotyping analysis. Despite no prior exposure to hormone ablation therapy, Pten null cells are tumorigenic in both male and female severe combined immunodeficiency mice. Furthermore, knocking down PTEN can convert the androgen-dependent Myc-CaP cell into androgen independence, suggesting that PTEN intrinsically controls androgen responsiveness, a critical step in the development of hormone refractory prostate cancer. Importantly, knocking down AR by shRNA in Pten null cells reverses androgen-independent growth in vitro and partially inhibited tumorigenesis in vivo, indicating that PTEN-controlled prostate tumorigenesis is AR dependent. These cell lines will serve as useful tools for understanding signaling pathways controlled by PTEN and elucidating the molecular mechanisms involved in hormone refractory prostate cancer formation.
Similar articles
- Conditional expression of PTEN alters the androgen responsiveness of prostate cancer cells.
Wu Z, Conaway M, Gioeli D, Weber MJ, Theodorescu D. Wu Z, et al. Prostate. 2006 Jul 1;66(10):1114-23. doi: 10.1002/pros.20447. Prostate. 2006. PMID: 16637073 - Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways.
Xing C, Ci X, Sun X, Fu X, Zhang Z, Dong EN, Hao ZZ, Dong JT. Xing C, et al. Neoplasia. 2014 Nov 20;16(11):883-99. doi: 10.1016/j.neo.2014.09.006. eCollection 2014 Nov. Neoplasia. 2014. PMID: 25425963 Free PMC article. - Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis.
Ma X, Ziel-van der Made AC, Autar B, van der Korput HA, Vermeij M, van Duijn P, Cleutjens KB, de Krijger R, Krimpenfort P, Berns A, van der Kwast TH, Trapman J. Ma X, et al. Cancer Res. 2005 Jul 1;65(13):5730-9. doi: 10.1158/0008-5472.CAN-04-4519. Cancer Res. 2005. PMID: 15994948 - Pten inactivation and the emergence of androgen-independent prostate cancer.
Shen MM, Abate-Shen C. Shen MM, et al. Cancer Res. 2007 Jul 15;67(14):6535-8. doi: 10.1158/0008-5472.CAN-07-1271. Cancer Res. 2007. PMID: 17638861 Review. - Hormone refractory prostate cancer: Lessons learned from the PTEN prostate cancer model.
Mulholland DJ, Jiao J, Wu H. Mulholland DJ, et al. Adv Exp Med Biol. 2008;617:87-95. doi: 10.1007/978-0-387-69080-3_8. Adv Exp Med Biol. 2008. PMID: 18497033 Review. No abstract available.
Cited by
- Suppressed prostate epithelial development with impaired branching morphogenesis in mice lacking stromal fibromuscular androgen receptor.
Lai KP, Yamashita S, Vitkus S, Shyr CR, Yeh S, Chang C. Lai KP, et al. Mol Endocrinol. 2012 Jan;26(1):52-66. doi: 10.1210/me.2011-1189. Epub 2011 Dec 1. Mol Endocrinol. 2012. PMID: 22135068 Free PMC article. - Bone morphogenetic protein-6 induces castration resistance in prostate cancer cells through tumor infiltrating macrophages.
Lee GT, Jung YS, Ha YS, Kim JH, Kim WJ, Kim IY. Lee GT, et al. Cancer Sci. 2013 Aug;104(8):1027-32. doi: 10.1111/cas.12206. Epub 2013 Jun 28. Cancer Sci. 2013. PMID: 23710822 Free PMC article. - GH Action in Prostate Cancer Cells Promotes Proliferation, Limits Apoptosis, and Regulates Cancer-related Gene Expression.
Unterberger CJ, Maklakova VI, Lazar M, Arneson PD, Mcilwain SJ, Tsourkas PK, Hu R, Kopchick JJ, Swanson SM, Marker PC. Unterberger CJ, et al. Endocrinology. 2022 May 1;163(5):bqac031. doi: 10.1210/endocr/bqac031. Endocrinology. 2022. PMID: 35383352 Free PMC article. - High Expression of PDLIM2 Predicts a Poor Prognosis in Prostate Cancer and Is Correlated with Epithelial-Mesenchymal Transition and Immune Cell Infiltration.
Piao S, Zheng L, Zheng H, Zhou M, Feng Q, Zhou S, Ke M, Yang H, Wang X. Piao S, et al. J Immunol Res. 2022 Jun 6;2022:2922832. doi: 10.1155/2022/2922832. eCollection 2022. J Immunol Res. 2022. PMID: 35707002 Free PMC article. - Genetic Alterations Detected in Cell-Free DNA Are Associated With Enzalutamide and Abiraterone Resistance in Castration-Resistant Prostate Cancer.
Torquato S, Pallavajjala A, Goldstein A, Toro PV, Silberstein JL, Lee J, Nakazawa M, Waters I, Chu D, Shinn D, Groginski T, Hughes RM, Simons BW, Khan H, Feng Z, Carducci MA, Paller CJ, Denmeade SR, Kressel B, Eisenberger MA, Antonarakis ES, Trock BJ, Park BH, Hurley PJ. Torquato S, et al. JCO Precis Oncol. 2019;3:PO.18.00227. doi: 10.1200/PO.18.00227. Epub 2019 Apr 3. JCO Precis Oncol. 2019. PMID: 31131348 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous