Epigenetic events in mammalian germ-cell development: reprogramming and beyond - PubMed (original) (raw)
Review
doi: 10.1038/nrg2295.
Affiliations
- PMID: 18197165
- DOI: 10.1038/nrg2295
Review
Epigenetic events in mammalian germ-cell development: reprogramming and beyond
Hiroyuki Sasaki et al. Nat Rev Genet. 2008 Feb.
Abstract
The epigenetic profile of germ cells, which is defined by modifications of DNA and chromatin, changes dynamically during their development. Many of the changes are associated with the acquisition of the capacity to support post-fertilization development. Our knowledge of this aspect has greatly increased- for example, insights into how the re-establishment of parental imprints is regulated. In addition, an emerging theme from recent studies is that epigenetic modifiers have key roles in germ-cell development itself--for example, epigenetics contributes to the gene-expression programme that is required for germ-cell development, regulation of meiosis and genomic integrity. Understanding epigenetic regulation in germ cells has implications for reproductive engineering technologies and human health.
Similar articles
- Chromatin modification and epigenetic reprogramming in mammalian development.
Li E. Li E. Nat Rev Genet. 2002 Sep;3(9):662-73. doi: 10.1038/nrg887. Nat Rev Genet. 2002. PMID: 12209141 Review. - Epigenetic reprogramming in mammals.
Morgan HD, Santos F, Green K, Dean W, Reik W. Morgan HD, et al. Hum Mol Genet. 2005 Apr 15;14 Spec No 1:R47-58. doi: 10.1093/hmg/ddi114. Hum Mol Genet. 2005. PMID: 15809273 Review. - Epigenetics and the germline.
Allegrucci C, Thurston A, Lucas E, Young L. Allegrucci C, et al. Reproduction. 2005 Feb;129(2):137-49. doi: 10.1530/rep.1.00360. Reproduction. 2005. PMID: 15695608 Review. - Reproductive epigenetics.
Kelly TL, Trasler JM. Kelly TL, et al. Clin Genet. 2004 Apr;65(4):247-60. doi: 10.1111/j.0009-9163.2004.00236.x. Clin Genet. 2004. PMID: 15025714 Review. - Germ cell specification in mice: signaling, transcription regulation, and epigenetic consequences.
Saitou M, Yamaji M. Saitou M, et al. Reproduction. 2010 Jun;139(6):931-42. doi: 10.1530/REP-10-0043. Epub 2010 Apr 6. Reproduction. 2010. PMID: 20371640 Review.
Cited by
- Imprinted X chromosome inactivation in marsupials: The paternal X arrives at the egg with a silent DNA methylation profile.
Milton AM, Marín-Gual L, Lister NC, McIntyre KL, Grady PGS, Laird MK, Bond DM, Hore TA, O'Neill RJ, Pask AJ, Renfree MB, Ruiz-Herrera A, Waters PD. Milton AM, et al. Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2412185121. doi: 10.1073/pnas.2412185121. Epub 2024 Aug 27. Proc Natl Acad Sci U S A. 2024. PMID: 39190362 - ARID1 is required to regulate and reinforce H3K9me2 in sperm cells in Arabidopsis.
Li L, Yang H, Zhao Y, Hu Q, Zhang X, Jiang T, Jiang H, Zheng B. Li L, et al. Nat Commun. 2024 Aug 16;15(1):7078. doi: 10.1038/s41467-024-51513-4. Nat Commun. 2024. PMID: 39152128 Free PMC article. - Efficient activation of hundreds of LTR12C elements reveals cis-regulatory function determined by distinct epigenetic mechanisms.
Ohtani H, Liu M, Liang G, Jang HJ, Jones PA. Ohtani H, et al. Nucleic Acids Res. 2024 Aug 12;52(14):8205-8217. doi: 10.1093/nar/gkae498. Nucleic Acids Res. 2024. PMID: 38874474 Free PMC article. - Maternal Obesity Induces the Meiotic Defects and Epigenetic Alterations During Fetal Oocyte Development.
Tang S, Wu H, Chen Q, Tang T, Li J, An H, Zhu S, Han L, Sun H, Ge J, Qian X, Wang X, Wang Q. Tang S, et al. Adv Sci (Weinh). 2024 Aug;11(30):e2309184. doi: 10.1002/advs.202309184. Epub 2024 Jun 13. Adv Sci (Weinh). 2024. PMID: 38868907 Free PMC article. - mRNA isoform switches during mouse zygotic genome activation.
Li F, Karimi N, Wang S, Pan T, Dong J, Wang X, Ma S, Shan Q, Liu C, Zhang Y, Li W, Feng G. Li F, et al. Cell Prolif. 2024 Jul;57(7):e13655. doi: 10.1111/cpr.13655. Epub 2024 May 19. Cell Prolif. 2024. PMID: 38764347 Free PMC article. No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources