Molecular regulation of cardiac hypertrophy - PubMed (original) (raw)
Review
Molecular regulation of cardiac hypertrophy
Sean P Barry et al. Int J Biochem Cell Biol. 2008.
Abstract
Heart failure is one of the leading causes of mortality in the western world and encompasses a wide spectrum of cardiac pathologies. When the heart experiences extended periods of elevated workload, it undergoes hypertrophic enlargement in response to the increased demand. Cardiovascular disease, such as that caused by myocardial infarction, obesity or drug abuse promotes cardiac myocyte hypertrophy and subsequent heart failure. A number of signalling modulators in the vasculature milieu are known to regulate heart mass including those that influence gene expression, apoptosis, cytokine release and growth factor signalling. Recent evidence using genetic and cellular models of cardiac hypertrophy suggests that pathological hypertrophy can be prevented or reversed and has promoted an enormous drive in drug discovery research aiming to identify novel and specific regulators of hypertrophy. In this review we describe the molecular characteristics of cardiac hypertrophy such as the aberrant re-expression of the fetal gene program. We discuss the various molecular pathways responsible for the co-ordinated control of the hypertrophic program including: natriuretic peptides, the adrenergic system, adhesion and cytoskeletal proteins, IL-6 cytokine family, MEK-ERK1/2 signalling, histone acetylation, calcium-mediated modulation and the exciting recent discovery of the role of microRNAs in controlling cardiac hypertrophy. Characterisation of the signalling pathways leading to cardiac hypertrophy has led to a wealth of knowledge about this condition both physiological and pathological. The challenge will be translating this knowledge into potential pharmacological therapies for the treatment of cardiac pathologies.
Similar articles
- Molecular targets and regulators of cardiac hypertrophy.
Rohini A, Agrawal N, Koyani CN, Singh R. Rohini A, et al. Pharmacol Res. 2010 Apr;61(4):269-80. doi: 10.1016/j.phrs.2009.11.012. Epub 2009 Dec 5. Pharmacol Res. 2010. PMID: 19969085 Review. - MicroRNAs target gene and signaling pathway by bioinformatics analysis in the cardiac hypertrophy.
Shen E, Diao X, Wei C, Wu Z, Zhang L, Hu B. Shen E, et al. Biochem Biophys Res Commun. 2010 Jul 2;397(3):380-5. doi: 10.1016/j.bbrc.2010.05.116. Epub 2010 May 27. Biochem Biophys Res Commun. 2010. PMID: 20510881 Review. - Small changes can make a big difference - microRNA regulation of cardiac hypertrophy.
Gladka MM, da Costa Martins PA, De Windt LJ. Gladka MM, et al. J Mol Cell Cardiol. 2012 Jan;52(1):74-82. doi: 10.1016/j.yjmcc.2011.09.015. Epub 2011 Sep 24. J Mol Cell Cardiol. 2012. PMID: 21971075 Review. - Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation.
Olson EN, Backs J, McKinsey TA. Olson EN, et al. Novartis Found Symp. 2006;274:3-12; discussion 13-9, 152-5, 272-6. Novartis Found Symp. 2006. PMID: 17019803 Review. - Signaling pathways in cardiac myocyte hypertrophy.
Hefti MA, Harder BA, Eppenberger HM, Schaub MC. Hefti MA, et al. J Mol Cell Cardiol. 1997 Nov;29(11):2873-92. doi: 10.1006/jmcc.1997.0523. J Mol Cell Cardiol. 1997. PMID: 9405163 Review.
Cited by
- Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease.
Du J, Shui H, Chen R, Dong Y, Xiao C, Hu Y, Wong NK. Du J, et al. Curr Issues Mol Biol. 2024 Jul 26;46(8):8031-8052. doi: 10.3390/cimb46080475. Curr Issues Mol Biol. 2024. PMID: 39194692 Free PMC article. Review. - Identification of two miRNAs regulating cardiomyocyte proliferation in an Antarctic icefish.
Xu Q, Jia R, Yang F, Hu P, Li X, Ge S, Jiang S, Chan J, Zhai W, Chen L. Xu Q, et al. iScience. 2024 May 27;27(6):110128. doi: 10.1016/j.isci.2024.110128. eCollection 2024 Jun 21. iScience. 2024. PMID: 38939105 Free PMC article. - Novel Multiplexed Plasma Biomarker Panel Has Diagnostic and Prognostic Potential in Children With Hypertrophic Cardiomyopathy.
Captur G, Doykov I, Chung SC, Field E, Barnes A, Zhang E, Heenan I, Norrish G, Moon JC, Elliott PM, Heywood WE, Mills K, Kaski JP. Captur G, et al. Circ Genom Precis Med. 2024 Jun;17(3):e004448. doi: 10.1161/CIRCGEN.123.004448. Epub 2024 Jun 7. Circ Genom Precis Med. 2024. PMID: 38847081 Free PMC article. - Prolylcarboxypeptidase Alleviates Hypertensive Cardiac Remodeling by Regulating Myocardial Tissue Angiotensin II.
Nguyen BY, Zhou F, Binder P, Liu W, Hille SS, Luo X, Zi M, Zhang H, Adamson A, Ahmed FZ, Butterworth S, Cartwright EJ, Müller OJ, Guan K, Fitzgerald EM, Wang X. Nguyen BY, et al. J Am Heart Assoc. 2023 Jun 20;12(12):e028298. doi: 10.1161/JAHA.122.028298. Epub 2023 Jun 15. J Am Heart Assoc. 2023. PMID: 37318028 Free PMC article. - Cardiomyocyte ZKSCAN3 regulates remodeling following pressure-overload.
Ouyang X, Bakshi S, Benavides GA, Sun Z, Hernandez-Moreno G, Collins HE, Kane MS, Litovsky S, Young ME, Chatham JC, Darley-Usmar V, Wende AR, Zhang J. Ouyang X, et al. Physiol Rep. 2023 May;11(9):e15686. doi: 10.14814/phy2.15686. Physiol Rep. 2023. PMID: 37144628 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous