Investigating human leukemogenesis: from cell lines to in vivo models of human leukemia - PubMed (original) (raw)
Review
. 2008 Nov;22(11):2029-40.
doi: 10.1038/leu.2008.206. Epub 2008 Aug 7.
Affiliations
- PMID: 18685615
- DOI: 10.1038/leu.2008.206
Review
Investigating human leukemogenesis: from cell lines to in vivo models of human leukemia
J A Kennedy et al. Leukemia. 2008 Nov.
Abstract
The hematopoietic system produces appropriate levels of blood cells over an individual's lifetime through a careful balance of differentiation, proliferation and self-renewal. The acquisition of genetic and epigenetic alterations leads to deregulation of these processes and the development of acute leukemias. A prerequisite to targeted therapies directed against these malignancies is a thorough understanding of the processes that subvert the normal developmental program of the hematopoietic system. This involves identifying the molecular lesions responsible for malignant transformation, their mechanisms of action and the cell type(s) in which they occur. Over the last 3 decades, significant progress has been made through the identification of recurrent genetic alterations and translocations in leukemic blast populations, and their subsequent functional characterization in cell lines and/or mouse models. Recently, primary human hematopoietic cells have emerged as a complementary means to characterize leukemic oncogenes. This approach enables the process of leukemogenesis to be precisely modeled in the appropriate cellular context: from primary human hematopoietic cells to leukemic stem cells capable of initiating disease in vivo. Here we review the model systems used to study leukemogenesis, and focus particularly on recent advances provided by in vitro and in vivo studies with primary human hematopoietic cells.
Similar articles
- Leukemia stem cells.
Testa U. Testa U. Ann Hematol. 2011 Mar;90(3):245-71. doi: 10.1007/s00277-010-1118-7. Epub 2010 Nov 25. Ann Hematol. 2011. PMID: 21107841 Review. - Constitutive activation of Flt3 and STAT5A enhances self-renewal and alters differentiation of hematopoietic stem cells.
Moore MA, Dorn DC, Schuringa JJ, Chung KY, Morrone G. Moore MA, et al. Exp Hematol. 2007 Apr;35(4 Suppl 1):105-16. doi: 10.1016/j.exphem.2007.01.018. Exp Hematol. 2007. PMID: 17379095 - Genetic and epigenetic alterations that drive leukemic stem cell self-renewal.
van den Boom V, Horton SJ, Schuringa JJ. van den Boom V, et al. J Stem Cells. 2012;7(3):155-79. J Stem Cells. 2012. PMID: 23619382 Review. - CD34+CD38+CD19+ as well as CD34+CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL.
Kong Y, Yoshida S, Saito Y, Doi T, Nagatoshi Y, Fukata M, Saito N, Yang SM, Iwamoto C, Okamura J, Liu KY, Huang XJ, Lu DP, Shultz LD, Harada M, Ishikawa F. Kong Y, et al. Leukemia. 2008 Jun;22(6):1207-13. doi: 10.1038/leu.2008.83. Epub 2008 Apr 17. Leukemia. 2008. PMID: 18418410 - Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy.
Tsiftsoglou AS, Bonovolias ID, Tsiftsoglou SA. Tsiftsoglou AS, et al. Pharmacol Ther. 2009 Jun;122(3):264-80. doi: 10.1016/j.pharmthera.2009.03.001. Epub 2009 Mar 21. Pharmacol Ther. 2009. PMID: 19306896 Review.
Cited by
- Oxidative stress response induced by chemotherapy in leukemia treatment.
Zhang J, Lei W, Chen X, Wang S, Qian W. Zhang J, et al. Mol Clin Oncol. 2018 Mar;8(3):391-399. doi: 10.3892/mco.2018.1549. Epub 2018 Jan 10. Mol Clin Oncol. 2018. PMID: 29599981 Free PMC article. - Dominant-negative Ikaros cooperates with BCR-ABL1 to induce human acute myeloid leukemia in xenografts.
Theocharides AP, Dobson SM, Laurenti E, Notta F, Voisin V, Cheng PY, Yuan JS, Guidos CJ, Minden MD, Mullighan CG, Torlakovic E, Dick JE. Theocharides AP, et al. Leukemia. 2015 Jan;29(1):177-87. doi: 10.1038/leu.2014.150. Epub 2014 May 5. Leukemia. 2015. PMID: 24791856 - Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor.
Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, Vu C, Lilly MB, Mallya S, Ong ST, Konopleva M, Martin MB, Ren P, Liu Y, Rommel C, Fruman DA. Janes MR, et al. Nat Med. 2010 Feb;16(2):205-13. doi: 10.1038/nm.2091. Epub 2010 Jan 13. Nat Med. 2010. PMID: 20072130 Free PMC article. - Divergent leukaemia subclones as cellular models for testing vulnerabilities associated with gains in chromosomes 7, 8 or 18.
Maher M, Diesch J, Le Pannérer MM, Cabezón M, Mallo M, Vergara S, Méndez López A, Mesa Tudel A, Solé F, Sorigue M, Zamora L, Granada I, Buschbeck M. Maher M, et al. Sci Rep. 2021 Oct 27;11(1):21145. doi: 10.1038/s41598-021-00623-w. Sci Rep. 2021. PMID: 34707142 Free PMC article. - Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity.
Quotti Tubi L, Gurrieri C, Brancalion A, Bonaldi L, Bertorelle R, Manni S, Pavan L, Lessi F, Zambello R, Trentin L, Adami F, Ruzzene M, Pinna LA, Semenzato G, Piazza F. Quotti Tubi L, et al. J Hematol Oncol. 2013 Oct 12;6:78. doi: 10.1186/1756-8722-6-78. J Hematol Oncol. 2013. PMID: 24283803 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials