Multimodal architectonic subdivision of the rostral part (area F5) of the macaque ventral premotor cortex - PubMed (original) (raw)
. 2009 Jan 10;512(2):183-217.
doi: 10.1002/cne.21892.
Affiliations
- PMID: 19003790
- DOI: 10.1002/cne.21892
Multimodal architectonic subdivision of the rostral part (area F5) of the macaque ventral premotor cortex
Abdelouahed Belmalih et al. J Comp Neurol. 2009.
Abstract
We used a cyto-, myelo-, and chemoarchitectonic (distribution of SMI-32 and calbindin immunoreactivity) approach to assess whether the rostral histochemical area F5 of the ventral premotor cortex (PMv) comprises architectonically distinct areas, possibly corresponding to functionally different fields. Three areas were identified, occupying different parts of F5. One area, designated as "convexity" F5 (F5c), extends on the postarcuate convexity cortex adjacent to the inferior arcuate sulcus and is characterized, cytoarchitectonically, by a poorly laminated appearance, resulting from an overall cell population rather homogeneous in size and density. The other two areas, designated as "posterior" and "anterior" F5 (F5p and F5a, respectively), lie within the postarcuate bank at different anteroposterior levels. Major cytoarchitectonic features of F5p are a layer III relatively homogeneous in cell size and density, a cell-dense layer Va, and the presence of relatively large pyramids in layer Vb. Major cytoarchitectonic features of F5a are the presence of relatively large pyramids in lowest layer III and a prominent, homogenous layer V. Furthermore, our results showed that F5c and F5p border caudally with a caudal PMv area corresponding to histochemical area F4, providing additional evidence for a general subdivision of the macaque PMv into a caudal and a rostral part, corresponding to F4 and to the F5 complex, respectively. The present data, together with other functional and connectional data, suggest that the three rostral PMv areas F5p, F5a, and F5c correspond to distinct cortical entities, possibly involved in different aspects of motor control and cognitive motor functions.
Similar articles
- Cortical connections of the anterior (F5a) subdivision of the macaque ventral premotor area F5.
Gerbella M, Belmalih A, Borra E, Rozzi S, Luppino G. Gerbella M, et al. Brain Struct Funct. 2011 Mar;216(1):43-65. doi: 10.1007/s00429-010-0293-6. Epub 2010 Dec 5. Brain Struct Funct. 2011. PMID: 21132509 - Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey.
Matelli M, Luppino G, Rizzolatti G. Matelli M, et al. J Comp Neurol. 1991 Sep 22;311(4):445-62. doi: 10.1002/cne.903110402. J Comp Neurol. 1991. PMID: 1757597 - Multimodal architectonic subdivision of the caudal ventrolateral prefrontal cortex of the macaque monkey.
Gerbella M, Belmalih A, Borra E, Rozzi S, Luppino G. Gerbella M, et al. Brain Struct Funct. 2007 Dec;212(3-4):269-301. doi: 10.1007/s00429-007-0158-9. Epub 2007 Sep 25. Brain Struct Funct. 2007. PMID: 17899184 - Hierarchical Organization Within the Ventral Premotor Cortex of the Macaque Monkey.
Kurata K. Kurata K. Neuroscience. 2018 Jul 1;382:127-143. doi: 10.1016/j.neuroscience.2018.04.033. Epub 2018 Apr 30. Neuroscience. 2018. PMID: 29715510 Review. - A multiarchitectonic approach for the definition of functionally distinct areas and domains in the monkey frontal lobe.
Belmalih A, Borra E, Contini M, Gerbella M, Rozzi S, Luppino G. Belmalih A, et al. J Anat. 2007 Aug;211(2):199-211. doi: 10.1111/j.1469-7580.2007.00775.x. Epub 2007 Jul 9. J Anat. 2007. PMID: 17623035 Free PMC article. Review.
Cited by
- Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery.
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Tariciotti L, et al. Front Integr Neurosci. 2024 Feb 15;18:1324581. doi: 10.3389/fnint.2024.1324581. eCollection 2024. Front Integr Neurosci. 2024. PMID: 38425673 Free PMC article. - Intrinsic functional clustering of the macaque insular cortex.
Sypré L, Sharma S, Mantini D, Nelissen K. Sypré L, et al. Front Integr Neurosci. 2024 Jan 5;17:1272529. doi: 10.3389/fnint.2023.1272529. eCollection 2023. Front Integr Neurosci. 2024. PMID: 38250745 Free PMC article. - No Evidence for Cross-Modal fMRI Adaptation in Macaque Parieto-Premotor Mirror Neuron Regions.
Sharma S, Nelissen K. Sharma S, et al. Brain Sci. 2023 Oct 17;13(10):1466. doi: 10.3390/brainsci13101466. Brain Sci. 2023. PMID: 37891833 Free PMC article. - Cytoarchitectonic, receptor distribution and functional connectivity analyses of the macaque frontal lobe.
Rapan L, Froudist-Walsh S, Niu M, Xu T, Zhao L, Funck T, Wang XJ, Amunts K, Palomero-Gallagher N. Rapan L, et al. Elife. 2023 Aug 14;12:e82850. doi: 10.7554/eLife.82850. Elife. 2023. PMID: 37578332 Free PMC article. - Structural plasticity of motor cortices assessed by voxel-based morphometry and immunohistochemical analysis following internal capsular infarcts in macaque monkeys.
Matsuda K, Nagasaka K, Kato J, Takashima I, Higo N. Matsuda K, et al. Cereb Cortex Commun. 2022 Nov 8;3(4):tgac046. doi: 10.1093/texcom/tgac046. eCollection 2022. Cereb Cortex Commun. 2022. PMID: 36457456 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous