Lysosomal cysteine peptidase cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3beta signaling - PubMed (original) (raw)
Lysosomal cysteine peptidase cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3beta signaling
Qizhu Tang et al. J Mol Med (Berl). 2009 Mar.
Abstract
The lysosomal cysteine peptidase cathepsin L (CTSL) is an important lysosomal proteinase involved in a variety of cellular functions including intracellular protein turnover, epidermal homeostasis, and hair development. Deficiency of CTSL in mice results in a progressive dilated cardiomyopathy. In the present study, we tested the hypothesis that cardiac overexpression of human CTSL in the murine heart would protect against cardiac hypertrophy in vivo. The effects of constitutive human CTSL expression on cardiac hypertrophy were investigated using in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding (AB) in CTSL transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by two-dimensional and M-mode echocardiography as well as by molecular and pathological analyses of heart samples. Constitutive overexpression of human CTSL in the murine heart attenuated the hypertrophic response, markedly reduced apoptosis, and fibrosis. Cardiac function was also preserved in hearts with increased CTSL levels in response to hypertrophic stimuli. These beneficial effects were associated with attenuation of the Akt/GSK3beta signaling cascade. Our in vitro studies further confirmed that CTSL expression in cardiomyocytes blunts cardiac hypertrophy through blocking of Akt/GSK3beta signaling. The study indicates that CTSL improves cardiac function and inhibits cardiac hypertrophy, inflammation, and fibrosis through blocking Akt/GSK3beta signaling.
Comment in
- From furless to heartless-unraveling the diverse functions of cathepsin L.
Luft FC. Luft FC. J Mol Med (Berl). 2009 Mar;87(3):225-7. doi: 10.1007/s00109-009-0438-3. Epub 2009 Jan 25. J Mol Med (Berl). 2009. PMID: 19169657 No abstract available.
Similar articles
- Cardiac-specific Traf2 overexpression enhances cardiac hypertrophy through activating AKT/GSK3β signaling.
Huang Y, Wu D, Zhang X, Jiang M, Hu C, Lin J, Tang J, Wu L. Huang Y, et al. Gene. 2014 Feb 25;536(2):225-31. doi: 10.1016/j.gene.2013.12.052. Epub 2013 Dec 27. Gene. 2014. PMID: 24378234 - From furless to heartless-unraveling the diverse functions of cathepsin L.
Luft FC. Luft FC. J Mol Med (Berl). 2009 Mar;87(3):225-7. doi: 10.1007/s00109-009-0438-3. Epub 2009 Jan 25. J Mol Med (Berl). 2009. PMID: 19169657 No abstract available. - Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3β and TGF-β1-Smad signalling.
Yan L, Wei X, Tang QZ, Feng J, Zhang Y, Liu C, Bian ZY, Zhang LF, Chen M, Bai X, Wang AB, Fassett J, Chen Y, He YW, Yang Q, Liu PP, Li H. Yan L, et al. Cardiovasc Res. 2011 Oct 1;92(1):85-94. doi: 10.1093/cvr/cvr159. Epub 2011 Jun 1. Cardiovasc Res. 2011. PMID: 21632881 Free PMC article. - Are transgenic mice the 'alkahest' to understanding myocardial hypertrophy and failure?
Cook SA, Clerk A, Sugden PH. Cook SA, et al. J Mol Cell Cardiol. 2009 Feb;46(2):118-29. doi: 10.1016/j.yjmcc.2008.11.005. Epub 2008 Nov 21. J Mol Cell Cardiol. 2009. PMID: 19071133 Review. - The cell biology of disease: cellular mechanisms of cardiomyopathy.
Harvey PA, Leinwand LA. Harvey PA, et al. J Cell Biol. 2011 Aug 8;194(3):355-65. doi: 10.1083/jcb.201101100. J Cell Biol. 2011. PMID: 21825071 Free PMC article. Review.
Cited by
- Pathogenesis and Management of COVID-19.
Alfarouk KO, AlHoufie STS, Ahmed SBM, Shabana M, Ahmed A, Alqahtani SS, Alqahtani AS, Alqahtani AM, Ramadan AM, Ahmed ME, Ali HS, Bashir A, Devesa J, Cardone RA, Ibrahim ME, Schwartz L, Reshkin SJ. Alfarouk KO, et al. J Xenobiot. 2021 May 21;11(2):77-93. doi: 10.3390/jox11020006. J Xenobiot. 2021. PMID: 34063739 Free PMC article. Review. - Disruption of mindin exacerbates cardiac hypertrophy and fibrosis.
Bian ZY, Wei X, Deng S, Tang QZ, Feng J, Zhang Y, Liu C, Jiang DS, Yan L, Zhang LF, Chen M, Fassett J, Chen Y, He YW, Yang Q, Liu PP, Li H. Bian ZY, et al. J Mol Med (Berl). 2012 Aug;90(8):895-910. doi: 10.1007/s00109-012-0883-2. Epub 2012 Feb 25. J Mol Med (Berl). 2012. PMID: 22367478 Free PMC article. - Lysosomal dysfunction in diabetic cardiomyopathy.
Kobayashi S, Hahn Y, Silverstein B, Singh M, Fleitz A, Van J, Chen H, Liang Q. Kobayashi S, et al. Front Aging. 2023 Jan 20;4:1113200. doi: 10.3389/fragi.2023.1113200. eCollection 2023. Front Aging. 2023. PMID: 36742461 Free PMC article. Review. - Rational design of thioamide peptides as selective inhibitors of cysteine protease cathepsin L.
Phan HAT, Giannakoulias SG, Barrett TM, Liu C, Petersson EJ. Phan HAT, et al. Chem Sci. 2021 Jul 19;12(32):10825-10835. doi: 10.1039/d1sc00785h. eCollection 2021 Aug 18. Chem Sci. 2021. PMID: 35355937 Free PMC article. - Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications.
Hua Y, Nair S. Hua Y, et al. Biochim Biophys Acta. 2015 Feb;1852(2):195-208. doi: 10.1016/j.bbadis.2014.04.032. Epub 2014 May 9. Biochim Biophys Acta. 2015. PMID: 24815358 Free PMC article. Review.
References
- Curr Pharm Des. 2007;13(4):387-403 - PubMed
- Trends Pharmacol Sci. 2008 Jan;29(1):22-8 - PubMed
- Cardiovasc Res. 2005 Jul 1;67(1):21-9 - PubMed
- Biochim Biophys Acta. 2003 Jun 26;1649(1):30-9 - PubMed
- J Biol Chem. 2006 Oct 27;281(43):32841-51 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous