Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial - PubMed (original) (raw)

Randomized Controlled Trial

Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial

D K Coletta et al. Diabetologia. 2009 Apr.

Abstract

Aims/hypothesis: The molecular mechanisms by which thiazolidinediones improve insulin sensitivity in type 2 diabetes are not fully understood. We hypothesised that pioglitazone would activate the adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway and increase the expression of genes involved in adiponectin signalling, NEFA oxidation and mitochondrial function in human skeletal muscle.

Methods: A randomised, double-blind, parallel study was performed in 26 drug-naive type 2 diabetes patients treated with: (1) pioglitazone (n = 14) or (2) aggressive nutritional therapy (n = 12) to reduce HbA(1c) to levels observed in the pioglitazone-treated group. Participants were assigned randomly to treatment using a table of random numbers. Before and after 6 months, patients reported to the Clinical Research Center of the Texas Diabetes Institute for a vastus lateralis muscle biopsy followed by a 180 min euglycaemic-hyperinsulinaemic (80 mU m(-2) min(-1)) clamp.

Results: All patients in the pioglitazone (n = 14) or nutritional therapy (n = 12) group were included in the analysis. Pioglitazone significantly increased plasma adiponectin concentration by 79% and reduced fasting plasma NEFA by 35% (both p < 0.01). Following pioglitazone, insulin-stimulated glucose disposal increased by 30% (p < 0.01), and muscle AMPK and acetyl-CoA carboxylase (ACC) phosphorylation increased by 38% and 53%, respectively (p < 0.05). Pioglitazone increased mRNA levels for adiponectin receptor 1 and 2 genes (ADIPOR1, ADIPOR2), peroxisome proliferator-activated receptor gamma, coactivator 1 gene (PPARGC1) and multiple genes involved in mitochondrial function and fat oxidation. Despite a similar reduction in HbA(1c) and similar improvement in insulin sensitivity with nutritional therapy, there were no significant changes in muscle AMPK and ACC phosphorylation, or the expression of ADIPOR1, ADIPOR2, PPARGC1 and genes involved in mitochondrial function and fat oxidation. No adverse (or unexpected) effects or side effects were reported from the study.

Conclusions/interpretations: Pioglitazone increases plasma adiponectin levels, stimulates muscle AMPK signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation. These changes may represent an important cellular mechanism by which thiazolidinediones improve skeletal muscle insulin sensitivity.

Trial registration: NCT 00816218 FUNDING: This trial was funded by National Institutes of Health Grant DK24092, VA Merit Award, GCRC Grant RR01346, Executive Research Committee Research Award from the University of Texas Health Science Center at San Antonio, American Diabetes Association Junior Faculty Award, American Heart Association National Scientist Development Grant, Takeda Pharmaceuticals North America Grant and Canadian Institute of Health Research Grant.

Trial registration: ClinicalTrials.gov NCT00816218.

PubMed Disclaimer

Figures

Fig. 1

Fig. 1

Effect of pioglitazone and nutritional therapy on AMPK (a) and ACC (b) phosphorylation (P). Data are expressed as arbitrary units (AU). Protein extracts were available for 12 pioglitazone- and nine nutritional therapy-treated patients. Representative blots for two patients are shown. *p<0.05 vs pretreatment; †p<0.05 for the comparison between pioglitazone- and nutritional therapy-treated groups (change from baseline). Means±SEM

Fig. 2

Fig. 2

Effect of pioglitazone and nutritional therapy on mRNA expression of ADIPOR1 (a), and ADIPOR2 (b). Expression data were normalised by dividing the amount of the gene of interest by the amount of RN18S gene used as an internal control. *p<0.05 vs pre-treatment; †p<0.05 for the comparison between pioglitazone- and nutritional therapy-treated groups (change from baseline). Means±SEM

Fig. 3

Fig. 3

a Effect of pioglitazone and nutritional therapy on PPARGC1A protein levels. Data are expressed as arbitrary units (AU). Protein extracts were available for 12 pioglitazone- and nine nutritional therapy-treated patients. Representative blots for two patients are shown. b, c Effect of pioglitazone and nutritional therapy on mRNA expression of PPARGC1A (b) and PPARGC1B (c). Expression data were normalised by dividing the amount of the gene of interest by the amount of RN18S gene used as an internal control. *p<0.05 and **p<0.01 vs pretreatment; †p<0.05 for the comparison between pioglitazone- and nutritional therapy-treated groups (change from baseline). Means±SEM

Fig. 4

Fig. 4

Proposed mechanism of action of pioglitazone. Pioglitazone increases plasma adiponectin concentration. AMPK and ACC activity is increased following pioglitazone, which is mediated via adiponectin or represents a possible direct effect of pioglitazone on AMPK. Pioglitazone stimulates the expression of PPARGC1A, CPT1B and a number of mRNAs involved in mitochondrial function and NEFA oxidation. P-, phosphorylated; DAG, diacylglycerol; FACoA, fatty acyl CoA

Similar articles

Cited by

References

    1. DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 1997;5:178–269.
    1. Reaven GM. Banting lecture. Role of insulin resistance in human disease. Diabetes. 1988;37:595–607. - PubMed
    1. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–2950. - PubMed
    1. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664–671. - PMC - PubMed
    1. Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100:8466–8471. - PMC - PubMed

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources