Roles of arginase variants, atopy, and ozone in childhood asthma - PubMed (original) (raw)
Roles of arginase variants, atopy, and ozone in childhood asthma
Muhammad T Salam et al. J Allergy Clin Immunol. 2009 Mar.
Abstract
Background: Arginases (encoded by ARG1 and ARG2 genes) might play an important role in asthma pathogenesis through effects on nitrosative stress. Arginase expression is upregulated in asthma and varies with T(H)2 cytokine levels and oxidative stress.
Objective: We aimed to examine whether variants in these genes are associated with asthma and whether atopy and exposures to smoking and air pollution influence the associations.
Methods: Among non-Hispanic and Hispanic white participants of the Children's Health Study (n = 2946), we characterized variation in each locus (including promoter region) with 6 tag single nucleotide polymorphisms for ARG1 and 10 for ARG2. Asthma was defined by parental report of physician-diagnosed asthma at study entry.
Results: Both ARG1 and ARG2 genetic loci were significantly associated with asthma (global locus level P = .02 and .04, respectively). Compared with the most common haplotype within each locus, 1 ARG1 haplotype was associated with reduced risk (odds ratio [OR] per haplotype copy, 0.55; 95% CI, 0.36-0.84), and 1 ARG2 haplotype was associated with increased risk (OR per haplotype copy, 1.35; 95% CI, 1.04-1.76) of asthma. The effect of the ARG1 haplotype that was significantly associated with asthma varied by the child's history of atopy and ambient ozone (P(interaction) = .04 and .02, respectively). Among atopic children living in high-ozone communities, those carrying the ARG1 haplotype had reduced asthma risk (OR per haplotype copy, 0.12; 95% CI, 0.04-0.43; P(heterogeneity) across atopy/ozone categories = .008).
Conclusions: ARG1 and ARG2 loci are associated with childhood asthma. The association between ARG1 variation and asthma might depend on atopy and ambient ozone levels.
Similar articles
- Genetic polymorphisms in arginase I and II and childhood asthma and atopy.
Li H, Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, Estela Del Rio-Navarro B, Kistner EO, Gjessing HK, Lara-Sanchez Idel C, Chiu GY, London SJ. Li H, et al. J Allergy Clin Immunol. 2006 Jan;117(1):119-26. doi: 10.1016/j.jaci.2005.09.026. Epub 2005 Nov 28. J Allergy Clin Immunol. 2006. PMID: 16387594 Free PMC article. - Relationship between arginase genes polymorphisms and preschool wheezing phenotypes.
Gokmirza Ozdemir P, Eker D, Celik V, Beken B, Gurkan H, Yazicioglu M, Sut N. Gokmirza Ozdemir P, et al. Pediatr Pulmonol. 2021 Feb;56(2):561-570. doi: 10.1002/ppul.25202. Epub 2020 Dec 23. Pediatr Pulmonol. 2021. PMID: 33369279 - Genetic variations in nitric oxide synthase and arginase influence exhaled nitric oxide levels in children.
Salam MT, Bastain TM, Rappaport EB, Islam T, Berhane K, Gauderman WJ, Gilliland FD. Salam MT, et al. Allergy. 2011 Mar;66(3):412-9. doi: 10.1111/j.1398-9995.2010.02492.x. Epub 2010 Oct 6. Allergy. 2011. PMID: 21039601 Free PMC article. - Immunoglobulin constant heavy G subclass chain genes in asthma and allergy.
Oxelius VA. Oxelius VA. Immunol Res. 2008;40(2):179-91. doi: 10.1007/s12026-007-0007-1. Immunol Res. 2008. PMID: 18213529 Review. - Heterogeneity and the origins of asthma.
Scherzer R, Grayson MH. Scherzer R, et al. Ann Allergy Asthma Immunol. 2018 Oct;121(4):400-405. doi: 10.1016/j.anai.2018.06.009. Epub 2018 Jun 19. Ann Allergy Asthma Immunol. 2018. PMID: 29928982 Free PMC article. Review.
Cited by
- Influence of arginase polymorphisms and arginase levels/activity on the response to erectile dysfunction therapy with sildenafil.
Lacchini R, Muniz JJ, Nobre YTDA, Cologna AJ, Martins ACP, Tanus-Santos JE. Lacchini R, et al. Pharmacogenomics J. 2018 Apr;18(2):238-244. doi: 10.1038/tpj.2017.2. Epub 2017 Apr 4. Pharmacogenomics J. 2018. PMID: 28374859 - Short-term Effect of Fine Particulate Matter on Children's Hospital Admissions and Emergency Department Visits for Asthma: A Systematic Review and Meta-analysis.
Lim H, Kwon HJ, Lim JA, Choi JH, Ha M, Hwang SS, Choi WJ. Lim H, et al. J Prev Med Public Health. 2016 Jul;49(4):205-19. doi: 10.3961/jpmph.16.037. J Prev Med Public Health. 2016. PMID: 27499163 Free PMC article. Review. - "Cumulative Stress": The Effects of Maternal and Neonatal Oxidative Stress and Oxidative Stress-Inducible Genes on Programming of Atopy.
Manti S, Marseglia L, D'Angelo G, Cuppari C, Cusumano E, Arrigo T, Gitto E, Salpietro C. Manti S, et al. Oxid Med Cell Longev. 2016;2016:8651820. doi: 10.1155/2016/8651820. Epub 2016 Jul 18. Oxid Med Cell Longev. 2016. PMID: 27504149 Free PMC article. Review. - Mitochondria signaling pathways in allergic asthma.
Qian L, Mehrabi Nasab E, Athari SM, Athari SS. Qian L, et al. J Investig Med. 2022 Apr;70(4):863-882. doi: 10.1136/jim-2021-002098. Epub 2022 Feb 15. J Investig Med. 2022. PMID: 35168999 Free PMC article. Review. - Protein S-nitrosylation in health and disease: a current perspective.
Foster MW, Hess DT, Stamler JS. Foster MW, et al. Trends Mol Med. 2009 Sep;15(9):391-404. doi: 10.1016/j.molmed.2009.06.007. Epub 2009 Aug 31. Trends Mol Med. 2009. PMID: 19726230 Free PMC article. Review.
References
- Baraldi E, Giordano G, Pasquale MF, Carraro S, Mardegan A, Bonetto G, et al. 3-Nitrotyrosine, a marker of nitrosative stress, is increased in breath condensate of allergic asthmatic children. Allergy. 2006;61:90–6. - PubMed
- Ricciardolo FL, Di Stefano A, Sabatini F, Folkerts G. Reactive nitrogen species in the respiratory tract. Eur J Pharmacol. 2006;533:240–52. - PubMed
- Pijnenburg MW, De Jongste JC. Exhaled nitric oxide in childhood asthma: a review. Clin Exp Allergy. 2008;38:246–59. - PubMed
- Ckless K, van der Vliet A, Janssen-Heininger Y. Oxidative-nitrosative stress and post-translational protein modifications: implications to lung structure-function relations. Arginase modulates NF-kappaB activity via a nitric oxide-dependent mechanism. Am J Respir Cell Mol Biol. 2007;36:645–53. - PMC - PubMed
- Belik J, Shehnaz D, Pan J, Grasemann H. Developmental changes in arginase expression and activity in the lung. Am J Physiol Lung Cell Mol Physiol. 2008 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- P30 ES007048/ES/NIEHS NIH HHS/United States
- R01 HL061768-08/HL/NHLBI NIH HHS/United States
- R01 HL076647-02/HL/NHLBI NIH HHS/United States
- P01 ES009581/ES/NIEHS NIH HHS/United States
- P01 ES009581-07/ES/NIEHS NIH HHS/United States
- R01 HL076647-04/HL/NHLBI NIH HHS/United States
- R01 HL061768-07/HL/NHLBI NIH HHS/United States
- P01 ES011627/ES/NIEHS NIH HHS/United States
- P01 ES009581-08/ES/NIEHS NIH HHS/United States
- R826708-01/PHS HHS/United States
- 5P01ES009581/ES/NIEHS NIH HHS/United States
- P30 ES007048-12/ES/NIEHS NIH HHS/United States
- R01 HL061768-02/HL/NHLBI NIH HHS/United States
- 5P30ES007048/ES/NIEHS NIH HHS/United States
- 5R01HL76647/HL/NHLBI NIH HHS/United States
- 5R01HL61768/HL/NHLBI NIH HHS/United States
- R01 HL076647/HL/NHLBI NIH HHS/United States
- P01 ES009581-06/ES/NIEHS NIH HHS/United States
- P30 ES007048-13/ES/NIEHS NIH HHS/United States
- R01 HL061768-04/HL/NHLBI NIH HHS/United States
- R01 HL061768/HL/NHLBI NIH HHS/United States
- P01 ES009581-10/ES/NIEHS NIH HHS/United States
- R01 HL076647-01A2/HL/NHLBI NIH HHS/United States
- R01 HL076647-03/HL/NHLBI NIH HHS/United States
- 5P01ES011627/ES/NIEHS NIH HHS/United States
- P01 ES011627-06/ES/NIEHS NIH HHS/United States
- R01 HL061768-05/HL/NHLBI NIH HHS/United States
- P01 ES011627-07/ES/NIEHS NIH HHS/United States
- R01 HL061768-09/HL/NHLBI NIH HHS/United States
- R01 HL061768-06/HL/NHLBI NIH HHS/United States
- P01 ES009581-09/ES/NIEHS NIH HHS/United States
- R01 HL061768-01/HL/NHLBI NIH HHS/United States
- RD831861-01/RD/ORD VA/United States
- R01 HL061768-03/HL/NHLBI NIH HHS/United States
- P30 ES007048-11/ES/NIEHS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous