Gene expression signature associated with BRAF mutations in human primary cutaneous melanomas - PubMed (original) (raw)
doi: 10.1016/j.molonc.2008.01.002. Epub 2008 Jan 12.
Alain Spatz, Stefan Michiels, Alain Eychène, Philippe Dessen, Vladimir Lazar, Véronique Winnepenninckx, Fabienne Lesueur, Sabine Druillennec, Caroline Robert, Joost J van den Oord, Alain Sarasin, Brigitte Bressac-de Paillerets; EORTC Melanoma group
Affiliations
- PMID: 19383316
- PMCID: PMC5543835
- DOI: 10.1016/j.molonc.2008.01.002
Gene expression signature associated with BRAF mutations in human primary cutaneous melanomas
Caroline Kannengiesser et al. Mol Oncol. 2008 Apr.
Abstract
With the aim to correlate BRAF mutation status with gene expression in human primary cutaneous melanomas, and thus to get more insight on the consequences of BRAF mutation on cell biology, we analyzed all expression data obtained in melanomas from which DNA was extracted from the same tissue slides that were used for the expression study. A cohort of 69 frozen primary melanoma whose oligonucleotide micro-array expression data were available, were genotyped for BRAF and NRAS genes. The expression data from these melanomas were re-analyzed according to BRAF mutational status. A set of 250 probes representing 209 genes that were significantly (raw P< or =0.001) associated with BRAF mutation status was identified and 17 of these were previously shown to be implicated in cutaneous melanoma progression or pigmentation pathway-associated genes driven by the microphthalmia transcription factor (MITF). The list of 34 top probes contained no more than 1% of false discoveries with a probability of 0.95. Among the genes that differentiated most strongly between BRAF mutated and non-mutated melanomas, there were those involved in melanoma immune response such as MAGE-D2, CD63, and HSP70. These findings support the immunogenicity of BRAF(V600E), eliciting patients T-cell responses in various in vitro assays. The genes whose expression is associated with BRAF mutations are not simply restricted to the MAPK/ERK signaling but also converge to enhanced immune responsiveness, cell motility and melanosomes processing involved in the adaptative UV response.
Similar articles
- Spectrum and Frequency of BRAF Mutations in Skin Melanomas in the Dalmatian Region of Croatia.
Bezić J, Tomić I, Pavić M. Bezić J, et al. Acta Dermatovenerol Croat. 2024 Mar;32(1):75-76. Acta Dermatovenerol Croat. 2024. PMID: 38946192 - Marked genetic differences between BRAF and NRAS mutated primary melanomas as revealed by array comparative genomic hybridization.
Lázár V, Ecsedi S, Vízkeleti L, Rákosy Z, Boross G, Szappanos B, Bégány A, Emri G, Adány R, Balázs M. Lázár V, et al. Melanoma Res. 2012 Jun;22(3):202-14. doi: 10.1097/CMR.0b013e328352dbc8. Melanoma Res. 2012. PMID: 22456166 - Melanoma with in-frame deletion of MAP2K1: a distinct molecular subtype of cutaneous melanoma mutually exclusive from BRAF, NRAS, and NF1 mutations.
Williams EA, Montesion M, Shah N, Sharaf R, Pavlick DC, Sokol ES, Alexander B, Venstrom J, Elvin JA, Ross JS, Williams KJ, Tse JY, Mochel MC. Williams EA, et al. Mod Pathol. 2020 Dec;33(12):2397-2406. doi: 10.1038/s41379-020-0581-5. Epub 2020 Jun 1. Mod Pathol. 2020. PMID: 32483240 Free PMC article. - Metaanalysis of BRAF mutations and clinicopathologic characteristics in primary melanoma.
Kim SY, Kim SN, Hahn HJ, Lee YW, Choe YB, Ahn KJ. Kim SY, et al. J Am Acad Dermatol. 2015 Jun;72(6):1036-46.e2. doi: 10.1016/j.jaad.2015.02.1113. Epub 2015 Mar 25. J Am Acad Dermatol. 2015. PMID: 25819940 Review. - Association of BRAF V600E Status of Incident Melanoma and Risk for a Second Primary Malignancy: A Population-Based Study.
Lalla SC, Kumar AB, Lehman JS, Lohse CM, Brewer JD. Lalla SC, et al. Cutis. 2022 Sep;110(3):150-154. doi: 10.12788/cutis.0607. Cutis. 2022. PMID: 36446115 Review.
Cited by
- Optimal treatment strategy for metastatic melanoma patients harboring BRAF-V600 mutations.
Giunta EF, De Falco V, Napolitano S, Argenziano G, Brancaccio G, Moscarella E, Ciardiello D, Ciardiello F, Troiani T. Giunta EF, et al. Ther Adv Med Oncol. 2020 Jun 19;12:1758835920925219. doi: 10.1177/1758835920925219. eCollection 2020. Ther Adv Med Oncol. 2020. PMID: 32612709 Free PMC article. Review. - A modified gene trap approach for improved high-throughput cancer drug discovery.
Morris SM, Mhyre AJ, Carmack SS, Myers CH, Burns C, Ye W, Ferrer M, Olson JM, Klinghoffer RA. Morris SM, et al. Oncogene. 2018 Aug;37(31):4226-4238. doi: 10.1038/s41388-018-0274-4. Epub 2018 May 2. Oncogene. 2018. PMID: 29717260 Free PMC article. - BRAF V600 Mutation and BRAF Kinase Inhibitors in Conjunction With Stereotactic Radiosurgery for Intracranial Melanoma Metastases: A Multicenter Retrospective Study.
Mastorakos P, Xu Z, Yu J, Hess J, Qian J, Chatrath A, Taylor DG, Kondziolka D, Warnick R, Chiang V, Sheehan J. Mastorakos P, et al. Neurosurgery. 2019 Apr 1;84(4):868-880. doi: 10.1093/neuros/nyy203. Neurosurgery. 2019. PMID: 29846702 Free PMC article. - KMT2C mediates the estrogen dependence of breast cancer through regulation of ERα enhancer function.
Gala K, Li Q, Sinha A, Razavi P, Dorso M, Sanchez-Vega F, Chung YR, Hendrickson R, Hsieh JJ, Berger M, Schultz N, Pastore A, Abdel-Wahab O, Chandarlapaty S. Gala K, et al. Oncogene. 2018 Aug;37(34):4692-4710. doi: 10.1038/s41388-018-0273-5. Epub 2018 May 14. Oncogene. 2018. PMID: 29755131 Free PMC article. - Optimized dendritic cell vaccination induces potent CD8 T cell responses and anti-tumor effects in transgenic mouse melanoma models.
Grees M, Sharbi-Yunger A, Evangelou C, Baumann D, Cafri G, Tzehoval E, Eichmüller SB, Offringa R, Utikal J, Eisenbach L, Umansky V. Grees M, et al. Oncoimmunology. 2018 Mar 26;7(7):e1445457. doi: 10.1080/2162402X.2018.1445457. eCollection 2018. Oncoimmunology. 2018. PMID: 29900058 Free PMC article.
References
- Bloethner, S. , Hemminki, K. , Thirumaran, R.K. , Chen, B. , Mueller-Berghaus, J. , Ugurel, S. , Schadendorf, D. , Kumar, R. , 2006. Differences in global gene expression in melanoma cell lines with and without homozygous deletion of the CDKN2A locus genes. Melanoma Res.. 16, 297–307. - PubMed
- Buchholz, M. , Biebl, A. , Neesse, A. , Wagner, M. , Iwamura, T. , Leder, G. , Adler, G. , Gress, T.M. , 2003. SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res.. 63, 4945–4951. - PubMed
- Cao, M.G. , Auge, J.M. , Molina, R. , Marti, R. , Carrera, C. , Castel, T. , Vilella, R. , Conill, C. , Sanchez, M. , Malvehy, J. , Puig, S. , 2007. Melanoma inhibiting activity protein (MIA), beta-2 microglobulin and lactate dehydrogenase (LDH) in metastatic melanoma. Anticancer Res.. 27, 595–599. - PubMed
- Davies, H. , Bignell, G.R. , Cox, C. , Stephens, P. , Edkins, S. , Clegg, S. , Teague, J. , Woffendin, H. , Garnett, M.J. , Bottomley, W. , Davis, N. , Dicks, E. , Ewing, R. , Floyd, Y. , Gray, K. , Hall, S. , Hawes, R. , Hughes, J. , Kosmidou, V. , Menzies, A. , Mould, C. , Parker, A. , Stevens, C. , Watt, S. , Hooper, S. , Wilson, R. , Jayatilake, H. , Gusterson, B.A. , Cooper, C. , Shipley, J. , Hargrave, D. , Pritchard-Jones, K. , Maitland, N. , Chenevix-Trench, G. , Riggins, G.J. , Bigner, D.D. , Palmieri, G. , Cossu, A. , Flanagan, A. , Nicholson, A. , Ho, J.W. , Leung, S.Y. , Yuen, S.T. , Weber, B.L. , Seigler, H.F. , Darrow, T.L. , Paterson, H. , Marais, R. , Marshall, C.J. , Wooster, R. , Stratton, M.R. , Futreal, P.A. , 2002. Mutations of the BRAF gene in human cancer. Nature. 417, 949–954. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous