Cell biology of the ESCRT machinery - PubMed (original) (raw)
Review
Cell biology of the ESCRT machinery
Phyllis I Hanson et al. Curr Opin Cell Biol. 2009 Aug.
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery comprises a set of protein complexes that regulate sorting and trafficking into multivesicular bodies en route to the lysosome. The physical mechanism responsible for generating lumenal vesicles in this pathway is unknown. Here we review recent studies suggesting that components of the ESCRT-III complex drive lumenal vesicle formation and consider possible mechanisms for this reaction.
Figures
Figure 1
Schematic diagram showing multivesicular body biogenesis and topologically related events. The three distinct cellular processes shown - formation of intralumenal vesicles within the MVB, viral budding from the cell surface, and cell abscission at the end of cytokinesis -- share a common membrane topology and depend on at least some aspect of ESCRT pathway function.
Figure 2
The cycle of ESCRT-III polymer assembly and disassembly. The first four helices of an ESCRT-III protein form a helical bundle responsible for membrane binding and polymerization. These properties are masked by a C-terminal autoinhibitory domain in a “closed” conformation in the cytoplasm. Displacement of this autoinhibitory domain allows ESCRT-III proteins to assume an “open” conformation and assemble into polymers on the membrane. VPS4 hydrolyzes ATP to disassemble these polymers and return the proteins to their "closed" state.
Figure 3
Models of ESCRT-III driven vesicle formation. (A) "Purse-string" model based on [10]. A single ESCRT-III filament with asymmetric ends is used to delineate and later constrict the neck of an evolving vesicle. VPS4 is proposed to disassemble the filament from one end to constrict the string. (B) "Spiral constriction" model based on [65]. A growing ESCRT-III spiral surrounds and eventually constricts a cargo containing membrane domain, forcing cargo at the center into an evolving vesicle. (C) "Moving neck" model based on [64]. ESCRT-III filaments start at the center of a developing vesicle, bending the membrane as they grow. Disassembly of the filament tail allows the spiral to remain in only the neck of the evolving vesicle.
Similar articles
- A protein's final ESCRT.
Babst M. Babst M. Traffic. 2005 Jan;6(1):2-9. doi: 10.1111/j.1600-0854.2004.00246.x. Traffic. 2005. PMID: 15569240 Review. - The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.
Raiborg C, Stenmark H. Raiborg C, et al. Nature. 2009 Mar 26;458(7237):445-52. doi: 10.1038/nature07961. Nature. 2009. PMID: 19325624 Review. - Membrane scission by the ESCRT-III complex.
Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH. Wollert T, et al. Nature. 2009 Mar 12;458(7235):172-7. doi: 10.1038/nature07836. Epub 2009 Feb 22. Nature. 2009. PMID: 19234443 Free PMC article. - Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I.
Katzmann DJ, Babst M, Emr SD. Katzmann DJ, et al. Cell. 2001 Jul 27;106(2):145-55. doi: 10.1016/s0092-8674(01)00434-2. Cell. 2001. PMID: 11511343 - Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation.
Teis D, Saksena S, Emr SD. Teis D, et al. Dev Cell. 2008 Oct;15(4):578-89. doi: 10.1016/j.devcel.2008.08.013. Dev Cell. 2008. PMID: 18854142
Cited by
- Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component.
Baumgärtel V, Ivanchenko S, Dupont A, Sergeev M, Wiseman PW, Kräusslich HG, Bräuchle C, Müller B, Lamb DC. Baumgärtel V, et al. Nat Cell Biol. 2011 Apr;13(4):469-74. doi: 10.1038/ncb2215. Epub 2011 Mar 10. Nat Cell Biol. 2011. PMID: 21394086 - Computational model of membrane fission catalyzed by ESCRT-III.
Fabrikant G, Lata S, Riches JD, Briggs JA, Weissenhorn W, Kozlov MM. Fabrikant G, et al. PLoS Comput Biol. 2009 Nov;5(11):e1000575. doi: 10.1371/journal.pcbi.1000575. Epub 2009 Nov 20. PLoS Comput Biol. 2009. PMID: 19936052 Free PMC article. - New insights into HIV assembly and trafficking.
Balasubramaniam M, Freed EO. Balasubramaniam M, et al. Physiology (Bethesda). 2011 Aug;26(4):236-51. doi: 10.1152/physiol.00051.2010. Physiology (Bethesda). 2011. PMID: 21841072 Free PMC article. Review. - Current Knowledge of Endolysosomal and Autophagy Defects in Hereditary Spastic Paraplegia.
Toupenet Marchesi L, Leblanc M, Stevanin G. Toupenet Marchesi L, et al. Cells. 2021 Jul 2;10(7):1678. doi: 10.3390/cells10071678. Cells. 2021. PMID: 34359848 Free PMC article. Review. - Lysosomal Quality Control in Prion Diseases.
Majumder P, Chakrabarti O. Majumder P, et al. Mol Neurobiol. 2018 Mar;55(3):2631-2644. doi: 10.1007/s12035-017-0512-8. Epub 2017 Apr 18. Mol Neurobiol. 2018. PMID: 28421536 Review.
References
- Raiborg C, Stenmark H: The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 2009, 458:445–452. - PubMed
- Saksena S, Sun J, Chu T, Emr SD: ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 2007, 32:561–573. - PubMed
- Williams RL, Urbe S: The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 2007, 8:355–368. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials