Massively parallel sequencing of ataxia genes after array-based enrichment - PubMed (original) (raw)
Christian Gilissen, Peer Arts, Nienke Wieskamp, Walter van der Vliet, Sascha Vermeer, Marloes Steehouwer, Petra de Vries, Rowdy Meijer, Jorge Seiqueros, Nine V A M Knoers, Michael F Buckley, Hans Scheffer, Joris A Veltman
Affiliations
- PMID: 20151403
- DOI: 10.1002/humu.21221
Massively parallel sequencing of ataxia genes after array-based enrichment
Alexander Hoischen et al. Hum Mutat. 2010 Apr.
Abstract
Massively parallel sequencing has tremendous diagnostic potential but requires enriched templates for sequencing. Here we report the validation of an array-based sequence capture method in genetically heterogeneous disorders. The model disorder selected was AR ataxia, using five subjects with known mutations and two unaffected controls. The genomic sequences of seven disease genes, together with two control loci were targeted on a 2-Mb sequence-capture array. After enrichment, the patients' DNA samples were analyzed using one-quarter Roche GS FLX Titanium sequencing run, resulting in an average of 65 Mb of sequence data per patient. This was sufficient for an average 25-fold coverage/base in all targeted regions. Enrichment showed high specificity; on average, 80% of uniquely mapped reads were on target. Importantly, this approach enabled automated detection of deletions and hetero- and homozygous point mutations for 6/7 mutant alleles, and greater than 99% accuracy for known SNP variants. Our results also clearly show reduced coverage for sequences in repeat-rich regions, which significantly impacts the reliable detection of genomic variants. Based on these findings we recommend a minimal coverage of 15-fold for diagnostic implementation of this technology. We conclude that massive parallel sequencing of enriched samples enables personalized diagnosis of heterogeneous genetic disorders and qualifies for rapid diagnostic implementation.
(c) 2010 Wiley-Liss, Inc.
Similar articles
- Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform.
Summerer D, Schracke N, Wu H, Cheng Y, Bau S, Stähler CF, Stähler PF, Beier M. Summerer D, et al. Genomics. 2010 Apr;95(4):241-6. doi: 10.1016/j.ygeno.2010.01.006. Epub 2010 Feb 6. Genomics. 2010. PMID: 20138981 - Array-based sequence capture and next-generation sequencing for the identification of primary immunodeficiencies.
Ghosh S, Krux F, Binder V, Gombert M, Niehues T, Feyen O, Laws HJ, Borkhardt A; PID-NET: German Network on Primary Immunodeficiency Diseases. Ghosh S, et al. Scand J Immunol. 2012 Mar;75(3):350-4. doi: 10.1111/j.1365-3083.2011.02658.x. Scand J Immunol. 2012. PMID: 22017423 - Repeat subtraction-mediated sequence capture from a complex genome.
Fu Y, Springer NM, Gerhardt DJ, Ying K, Yeh CT, Wu W, Swanson-Wagner R, D'Ascenzo M, Millard T, Freeberg L, Aoyama N, Kitzman J, Burgess D, Richmond T, Albert TJ, Barbazuk WB, Jeddeloh JA, Schnable PS. Fu Y, et al. Plant J. 2010 Jun 1;62(5):898-909. doi: 10.1111/j.1365-313X.2010.04196.x. Epub 2010 Mar 4. Plant J. 2010. PMID: 20230488 - Impacts of massively parallel sequencing for genetic diagnosis of neuromuscular disorders.
Vasli N, Laporte J. Vasli N, et al. Acta Neuropathol. 2013 Feb;125(2):173-85. doi: 10.1007/s00401-012-1072-7. Epub 2012 Dec 7. Acta Neuropathol. 2013. PMID: 23224362 Review. - Enzymatic mutation detection technologies.
Yeung AT, Hattangadi D, Blakesley L, Nicolas E. Yeung AT, et al. Biotechniques. 2005 May;38(5):749-58. doi: 10.2144/05385RV01. Biotechniques. 2005. PMID: 15948293 Review.
Cited by
- Homozygous SLC6A17 mutations cause autosomal-recessive intellectual disability with progressive tremor, speech impairment, and behavioral problems.
Iqbal Z, Willemsen MH, Papon MA, Musante L, Benevento M, Hu H, Venselaar H, Wissink-Lindhout WM, Vulto-van Silfhout AT, Vissers LE, de Brouwer AP, Marouillat S, Wienker TF, Ropers HH, Kahrizi K, Nadif Kasri N, Najmabadi H, Laumonnier F, Kleefstra T, van Bokhoven H. Iqbal Z, et al. Am J Hum Genet. 2015 Mar 5;96(3):386-96. doi: 10.1016/j.ajhg.2015.01.010. Epub 2015 Feb 19. Am J Hum Genet. 2015. PMID: 25704603 Free PMC article. - Phenotypic variability in ARCA2 and identification of a core ataxic phenotype with slow progression.
Mignot C, Apartis E, Durr A, Marques Lourenço C, Charles P, Devos D, Moreau C, de Lonlay P, Drouot N, Burglen L, Kempf N, Nourisson E, Chantot-Bastaraud S, Lebre AS, Rio M, Chaix Y, Bieth E, Roze E, Bonnet I, Canaple S, Rastel C, Brice A, Rötig A, Desguerre I, Tranchant C, Koenig M, Anheim M. Mignot C, et al. Orphanet J Rare Dis. 2013 Oct 28;8:173. doi: 10.1186/1750-1172-8-173. Orphanet J Rare Dis. 2013. PMID: 24164873 Free PMC article. - Next generation sequencing (NGS) strategies for the genetic testing of myopathies.
Nigro V, Piluso G. Nigro V, et al. Acta Myol. 2012 Dec;31(3):196-200. Acta Myol. 2012. PMID: 23620651 Free PMC article. - A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries.
Fisher S, Barry A, Abreu J, Minie B, Nolan J, Delorey TM, Young G, Fennell TJ, Allen A, Ambrogio L, Berlin AM, Blumenstiel B, Cibulskis K, Friedrich D, Johnson R, Juhn F, Reilly B, Shammas R, Stalker J, Sykes SM, Thompson J, Walsh J, Zimmer A, Zwirko Z, Gabriel S, Nicol R, Nusbaum C. Fisher S, et al. Genome Biol. 2011;12(1):R1. doi: 10.1186/gb-2011-12-1-r1. Epub 2011 Jan 4. Genome Biol. 2011. PMID: 21205303 Free PMC article. - Genes to therapy: a comprehensive literature review of whole-exome sequencing in neurology and neurosurgery.
Tan JK, Awuah WA, Ahluwalia A, Sanker V, Ben-Jaafar A, Tenkorang PO, Aderinto N, Mehta A, Darko K, Shah MH, Roy S, Abdul-Rahman T, Atallah O. Tan JK, et al. Eur J Med Res. 2024 Nov 10;29(1):538. doi: 10.1186/s40001-024-02063-4. Eur J Med Res. 2024. PMID: 39523358 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous