A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle - PubMed (original) (raw)
A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle
F R Cross et al. Cell. 1991.
Abstract
The CLN1, CLN2, and CLN3 genes of S. cerevisiae form a redundant family essential for the G1-to-S phase transition. CLN1 and CLN2 mRNAs were previously shown to be negatively regulated by mating pheromone and by cell cycle progression out of G1, whereas CLN3 mRNA is not. The CLN3-2 (DAF1-1) allele prevents both cell cycle arrest and the turnoff of CLN1 and CLN2 mRNAs in response to mating pheromone, but only in the presence of an active CDC28 gene. An internally deleted nonfunctional cln2 gene was used as a reporter gene to demonstrate that in the absence of mating pheromone, efficient expression of cln2 mRNA requires both an active CDC28 gene and at least one functional CLN gene. mRNA from a nonfunctional cln1 gene was regulated similarly. Thus, CLN function and CDC28 activity jointly stimulate CLN1 and CLN2 mRNA levels, potentially forming a positive feedback loop for CLN1 and CLN2 expression.
Similar articles
- G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle.
Oehlen LJ, Cross FR. Oehlen LJ, et al. Genes Dev. 1994 May 1;8(9):1058-70. doi: 10.1101/gad.8.9.1058. Genes Dev. 1994. PMID: 7926787 - Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae.
Dirick L, Böhm T, Nasmyth K. Dirick L, et al. EMBO J. 1995 Oct 2;14(19):4803-13. doi: 10.1002/j.1460-2075.1995.tb00162.x. EMBO J. 1995. PMID: 7588610 Free PMC article. - Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins.
Tyers M, Tokiwa G, Futcher B. Tyers M, et al. EMBO J. 1993 May;12(5):1955-68. doi: 10.1002/j.1460-2075.1993.tb05845.x. EMBO J. 1993. PMID: 8387915 Free PMC article. - Is START a switch?
Cross F, McKinney J. Cross F, et al. Ciba Found Symp. 1992;170:20-5; discussion 25-9. doi: 10.1002/9780470514320.ch3. Ciba Found Symp. 1992. PMID: 1483346 Review. - FAR-reaching discoveries about the regulation of START.
Nasmyth KA. Nasmyth KA. Cell. 1990 Dec 21;63(6):1117-20. doi: 10.1016/0092-8674(90)90404-3. Cell. 1990. PMID: 2261635 Review. No abstract available.
Cited by
- Identifying vital nodes for yeast network by dynamic network entropy.
Liu J, Wang Y, Men J, Wang H. Liu J, et al. BMC Bioinformatics. 2024 Jul 18;25(1):242. doi: 10.1186/s12859-024-05863-x. BMC Bioinformatics. 2024. PMID: 39026169 Free PMC article. - Evidence for novel mechanisms that control cell-cycle entry and cell size.
Brambila A, Prichard BE, DeWitt JT, Kellogg DR. Brambila A, et al. Mol Biol Cell. 2024 Apr 1;35(4):ar46. doi: 10.1091/mbc.E23-05-0174. Epub 2024 Jan 17. Mol Biol Cell. 2024. PMID: 38231863 Free PMC article. - Hyperactive Ras disrupts cell size control and a key step in cell cycle entry in budding yeast.
DeWitt JT, Chinwuba JC, Kellogg DR. DeWitt JT, et al. Genetics. 2023 Oct 4;225(2):iyad144. doi: 10.1093/genetics/iyad144. Genetics. 2023. PMID: 37531631 Free PMC article. - Growth-dependent signals drive an increase in early G1 cyclin concentration to link cell cycle entry with cell growth.
Sommer RA, DeWitt JT, Tan R, Kellogg DR. Sommer RA, et al. Elife. 2021 Oct 29;10:e64364. doi: 10.7554/eLife.64364. Elife. 2021. PMID: 34713806 Free PMC article. - A phosphatase-centric mechanism drives stress signaling response.
Hollenstein DM, Gérecová G, Romanov N, Ferrari J, Veis J, Janschitz M, Beyer R, Schüller C, Ogris E, Hartl M, Ammerer G, Reiter W. Hollenstein DM, et al. EMBO Rep. 2021 Nov 4;22(11):e52476. doi: 10.15252/embr.202152476. Epub 2021 Sep 24. EMBO Rep. 2021. PMID: 34558777 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous