Spongipyran Synthetic Studies. Evolution of a Scalable Total Synthesis of (+)-Spongistatin 1 - PubMed (original) (raw)

. 2009 Sep 15;65(33):6489-6509.

doi: 10.1016/j.tet.2009.04.003.

Chris Sfouggatakis, Christina A Risatti, Jeffrey B Sperry, Wenyu Zhu, Victoria A Doughty, Takashi Tomioka, Dimitar B Gotchev, Clay S Bennett, Satoshi Sakamoto, Onur Atasoylu, Shohei Shirakami, David Bauer, Makoto Takeuchi, Jyunichi Koyanagi, Yasuharu Sakamoto

Affiliations

Spongipyran Synthetic Studies. Evolution of a Scalable Total Synthesis of (+)-Spongistatin 1

Amos B Smith et al. Tetrahedron. 2009.

Abstract

Three syntheses of the architecturally complex, cytotoxic marine macrolide (+)-spongistatin 1 (1) are reported. Highlights of the first-generation synthesis include: use of a dithiane multicomponent linchpin coupling tactic for construction of the AB and CD spiroketals, and their union via a highly selective Evans boron-mediated aldol reaction en route to an ABCD aldehyde; introduction of the C(44)-C(51) side chain via a Lewis acid-mediated ring opening of a glucal epoxide with an allylstannane to assemble the EF subunit; and final fragment union via Wittig coupling of the ABCD and EF subunits to form the C(28)-C(29) olefin, followed by regioselective Yamaguchi macrolactonization and global deprotection. The second- and third- generation syntheses, designed with the goal of accessing one gram of (+)-spongistatin 1 (1), maintain both the first-generation strategy for the ABCD aldehyde and final fragment union, while incorporating two more efficient approaches for construction of the EF Wittig salt. The latter combine the original chelation-controlled dithiane union of the E- and F-ring progenitors with application of a highly efficient cyanohydrin alkylation to append the F-ring side chain, in conjunction with two independent tactics to access the F-ring pyran. The first F-ring synthesis showcases a Petasis-Ferrier union/rearrangement protocol to access tetrahydropyrans, permitting the preparation of 750 mgs of the EF Wittig salt, which in turn was converted to 80 mg of (+)-spongistatin 1, while the second F-ring strategy, incorporates an organocatalytic aldol reaction as the key construct, permitting completion of 1.009 g of totally synthetic (+)-spongistatin 1 (1). A brief analysis of the three syntheses alongside our earlier synthesis of (+)-spongistatin 2 is also presented.

PubMed Disclaimer

Figures

Similar articles

Cited by

References

    1. Pettit GR, Cichacz ZA, Gao F, Herald CL, Boyd MR, Schmidt JM, Hooper JNA. J Org Chem. 1993;58:1302.
    2. Kobayashi M, Aoki S, Sakai H, Kawazoe K, Kihara N, Sasaki T, Kitagawa I. Tetrahedron Lett. 1993;34:2795.
    3. Fusetani N, Shinoda K, Matsunaga S. J Am Chem Soc. 1993;115:3977.
    1. Pettit noted that 400 kg of wet sponge yielded only 13.8 mg of (+)-spongistatin 1. see: Pettit GR, Cichacz ZA, Gao F, Herald CL, Boyd MR, Schmidt JM, Hooper JNA. J Org Chem. 1993;58:1302.
    1. Evans DA, Coleman PJ, Dias LC. Angew Chem, Int Ed. 1997;36:2738.
    2. Evans DA, Trotter BW, Côté B, Coleman PJ. Angew Chem, Int Ed. 1997;36:2741.
    3. Evans DA, Trotter BW, Côté B, Coleman PJ, Dias LC, Tyler AN. Angew Chem, Int Ed. 1997;36:2744.
    4. Evans DA, Trotter BW, Coleman PJ, Côté B, Dias LC, Rajapakse HA, Tyler AN. Tetrahedron. 1999;55:8671.
    5. Guo J, Duffy KJ, Stevens KL, Dalko PI, Roth RM, Hayward MM, Kishi Y. Angew Chem, Int Ed. 1998;37:187.
    6. Hayward MM, Roth RM, Duffy KJ, Dalko PI, Stevens KL, Guo J, Kishi Y. Angew Chem, Int Ed. 1998;37:190.
    7. Smith AB, III, Doughty VA, Lin Q, Zhuang L, McBriar MD, Boldi AM, Moser WH, Murase N, Nakayama K, Sobukawa M. Angew Chem, Int Ed. 2001;40:191. - PubMed
    8. Smith AB, III, Lin Q, Doughty VA, Zhuang L, McBriar MD, Kerns JK, Brook CS, Murase N, Nakayama K. Angew Chem, Int Ed. 2001;40:196. - PubMed
    9. Smith AB, III, Zhu W, Shirakami S, Sfouggatakis C, Doughty VA, Bennett CS, Sakamoto Y. Org Lett. 2003;5:761. - PubMed
    10. Smith AB, III, Tomioka T, Risatti CA, Sperry JB, Sfouggatakis C. Org Lett. 2008;19:4359. - PMC - PubMed
    11. Paterson I, Chen DYK, Coster MJ, Acenã JL, Bach J, Gibson KR, Keown LE, Oballa RM, Trieselmann T, Wallace DJ, Hodgson AP, Norcross RD. Angew Chem, Int Ed. 2001;40:4055. - PubMed
    12. Crimmins MT, Katz JD, Washburn DG, Allwein SP, McAtee LF. J Am Chem Soc. 2002;124:5661. - PubMed
    13. Hubbs JL, Heathcock CH. J Am Chem Soc. 2003;125:12836. - PubMed
    14. Heathcock CH, McLaughlin M, Medina J, Hubbs JL, Wallace GA, Scott R, Claffey MM, Hayes CJ, Ott GR. J Am Chem Soc. 2003;125:12844. - PubMed
    15. Ball M, Gaunt MJ, Hook DF, Jessiman AS, Kawahara S, Orsini P, Scolaro A, Talbot AC, Tanner HR, Yamanoi S, Ley SV. Angew Chem, Int Ed. 2005;44:5433. - PubMed
    16. Smith AB, III, Doughty VA, Sfouggatakis C, Bennett CS, Koyanagi J, Takeuchi M. Org Lett. 2002;4:783. - PubMed
    17. Paterson I, Wallace DJ, Oballa RM. Tetrahedron Lett. 1998;39:8545.
    18. Paterson I, Chen DYK, Coster MJ, Acena JL, Bach J, Wallace DJ. Org Biomol Chem. 2005;3:2431. - PubMed
    1. Smith AB, III, Beauchamp TJ, LaMarche MT, Kaufman MD, Qiu Y, Arimoto H, Jones DR, Kobayashi K. J Am Chem Soc. 2000;122:8654.
    2. Smith AB, III, Freeze BS. Tetrahedron. 2008;64:261. - PMC - PubMed
    1. Smith AB, III, Lin Q, Doughty VA, Bennett CS, Zhuang L, McBriar MD, Kerns JK, Boldi AM, Murase N, Moser WH, Brook CS, Nakayama K, Sobukawa M, Trout REL. manuscript submitted.

Grants and funding

LinkOut - more resources