Chromatin dynamics and the repair of DNA double strand breaks - PubMed (original) (raw)
Review
Chromatin dynamics and the repair of DNA double strand breaks
Ye Xu et al. Cell Cycle. 2011.
Abstract
DNA double-strand breaks (DSBs) arise through both replication errors and from exogenous events such as exposure to ionizing radiation. DSBs are potentially lethal, and cells have evolved a highly conserved mechanism to detect and repair these lesions. This mechanism involves phosphorylation of histone H2AX (γH2AX) and the loading of DNA repair proteins onto the chromatin adjacent to the DSB. It is now clear that the chromatin architecture in the region surrounding the DSB has a critical impact on the ability of cells to mount an effective DNA damage response. DSBs promote the direct the formation of open, relaxed chromatin domains which are spatially confined to the area surrounding the break. These relaxed chromatin structures are created through the coupled action of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. The resulting destabilization of nucleosomes at the DSB by Tip60 and p400 is required for ubiquitination of the chromatin by the RNF8 ubiquitin ligase, and for the subsequent recruitment of the brca1 complex. Chromatin dynamics at DSBs can therefore exert a powerful influence on the process of DSB repair. Further, there is emerging evidence that the different chromatin structures in the cell, such as heterochromatin and euchromatin, utilize distinct remodeling complexes and pathways to facilitate DSB. The processing and repair of DSB is therefore critically influenced by the nuclear architecture in which the lesion arises.
Figures
Figure 1
Nucleosome destabilization at DSBs by the NuA4 complex. p400 and Tip60 sub-units of NuA4 shown. RAP80/abraxas/brca1 complex is shown as brca1. Potential histone methylation changes which may influence 53BP1 recruitment outlined.
Similar articles
- The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair.
Xu Y, Sun Y, Jiang X, Ayrapetov MK, Moskwa P, Yang S, Weinstock DM, Price BD. Xu Y, et al. J Cell Biol. 2010 Oct 4;191(1):31-43. doi: 10.1083/jcb.201001160. Epub 2010 Sep 27. J Cell Biol. 2010. PMID: 20876283 Free PMC article. - Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair.
Xu Y, Ayrapetov MK, Xu C, Gursoy-Yuzugullu O, Hu Y, Price BD. Xu Y, et al. Mol Cell. 2012 Dec 14;48(5):723-33. doi: 10.1016/j.molcel.2012.09.026. Epub 2012 Oct 30. Mol Cell. 2012. PMID: 23122415 Free PMC article. - Chromatin remodeling at DNA double-strand breaks.
Price BD, D'Andrea AD. Price BD, et al. Cell. 2013 Mar 14;152(6):1344-54. doi: 10.1016/j.cell.2013.02.011. Cell. 2013. PMID: 23498941 Free PMC article. Review. - Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks.
Gursoy-Yuzugullu O, House N, Price BD. Gursoy-Yuzugullu O, et al. J Mol Biol. 2016 May 8;428(9 Pt B):1846-60. doi: 10.1016/j.jmb.2015.11.021. Epub 2015 Nov 26. J Mol Biol. 2016. PMID: 26625977 Free PMC article. Review. - DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin.
Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, Xu Y, Price BD. Ayrapetov MK, et al. Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9169-74. doi: 10.1073/pnas.1403565111. Epub 2014 Jun 9. Proc Natl Acad Sci U S A. 2014. PMID: 24927542 Free PMC article.
Cited by
- Strategies to optimize radiotherapy based on biological responses of tumor and normal tissue.
Wang W, Lang J. Wang W, et al. Exp Ther Med. 2012 Aug;4(2):175-180. doi: 10.3892/etm.2012.593. Epub 2012 May 30. Exp Ther Med. 2012. PMID: 22970024 Free PMC article. - Long-term effects of chromatin remodeling and DNA damage in stem cells induced by environmental and dietary agents.
Bariar B, Vestal CG, Richardson C. Bariar B, et al. J Environ Pathol Toxicol Oncol. 2013;32(4):307-27. doi: 10.1615/jenvironpatholtoxicoloncol.2013007980. J Environ Pathol Toxicol Oncol. 2013. PMID: 24579784 Free PMC article. Review. - Acetylation of XPF by TIP60 facilitates XPF-ERCC1 complex assembly and activation.
Wang J, He H, Chen B, Jiang G, Cao L, Jiang H, Zhang G, Chen J, Huang J, Yang B, Zhou C, Liu T. Wang J, et al. Nat Commun. 2020 Feb 7;11(1):786. doi: 10.1038/s41467-020-14564-x. Nat Commun. 2020. PMID: 32034146 Free PMC article. - Genetic variation in SIRT1 affects susceptibility of lung squamous cell carcinomas in former uranium miners from the Colorado plateau.
Leng S, Picchi MA, Liu Y, Thomas CL, Willis DG, Bernauer AM, Carr TG, Mabel PT, Han Y, Amos CI, Lin Y, Stidley CA, Gilliland FD, Jacobson MR, Belinsky SA. Leng S, et al. Carcinogenesis. 2013 May;34(5):1044-50. doi: 10.1093/carcin/bgt024. Epub 2013 Jan 25. Carcinogenesis. 2013. PMID: 23354305 Free PMC article. - Recombination in eukaryotic single stranded DNA viruses.
Martin DP, Biagini P, Lefeuvre P, Golden M, Roumagnac P, Varsani A. Martin DP, et al. Viruses. 2011 Sep;3(9):1699-738. doi: 10.3390/v3091699. Epub 2011 Sep 13. Viruses. 2011. PMID: 21994803 Free PMC article. Review.
References
- Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005;123:1213–1226. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous