Epigenetic modulation of the renal β-adrenergic-WNK4 pathway in salt-sensitive hypertension - PubMed (original) (raw)
doi: 10.1038/nm.2337. Epub 2011 Apr 17.
Affiliations
- PMID: 21499270
- DOI: 10.1038/nm.2337
Epigenetic modulation of the renal β-adrenergic-WNK4 pathway in salt-sensitive hypertension
ShengYu Mu et al. Nat Med. 2011 May.
Erratum in
- Nat Med. 2011 Aug;17(8):1020
- Nat Med. 2012 Apr;18(4):630
Abstract
How high salt intake increases blood pressure is a key question in the study of hypertension. Salt intake induces increased renal sympathetic activity resulting in sodium retention. However, the mechanisms underlying the sympathetic control of renal sodium excretion remain unclear. In this study, we found that β(2)-adrenergic receptor (β(2)AR) stimulation led to decreased transcription of the gene encoding WNK4, a regulator of sodium reabsorption. β(2)AR stimulation resulted in cyclic AMP-dependent inhibition of histone deacetylase-8 (HDAC8) activity and increased histone acetylation, leading to binding of the glucocorticoid receptor to a negative glucocorticoid-responsive element in the promoter region. In rat models of salt-sensitive hypertension and sympathetic overactivity, salt loading suppressed renal WNK4 expression, activated the Na(+)-Cl(-) cotransporter and induced salt-dependent hypertension. These findings implicate the epigenetic modulation of WNK4 transcription in the development of salt-sensitive hypertension. The renal β(2)AR-WNK4 pathway may be a therapeutic target for salt-sensitive hypertension.
Comment in
- Renal nerves, WNK4, glucocorticoids, and salt transport.
Ellison DH, Brooks VL. Ellison DH, et al. Cell Metab. 2011 Jun 8;13(6):619-20. doi: 10.1016/j.cmet.2011.05.007. Cell Metab. 2011. PMID: 21641543 Free PMC article. - Does a β2-adrenergic receptor-WNK4-Na-Cl co-transporter signal cascade exist in the in vivo kidney?
Uchida S, Chiga M, Sohara E, Rai T, Sasaki S. Uchida S, et al. Nat Med. 2012 Sep;18(9):1324-5; author reply 1325-7. doi: 10.1038/nm.2809. Nat Med. 2012. PMID: 22961153 No abstract available.
Similar articles
- Sympathetic regulation of NCC in norepinephrine-evoked salt-sensitive hypertension in Sprague-Dawley rats.
Frame AA, Puleo F, Kim K, Walsh KR, Faudoa E, Hoover RS, Wainford RD. Frame AA, et al. Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1623-F1636. doi: 10.1152/ajprenal.00264.2019. Epub 2019 Oct 14. Am J Physiol Renal Physiol. 2019. PMID: 31608673 Free PMC article. - Renal mechanisms of salt-sensitive hypertension: contribution of two steroid receptor-associated pathways.
Nishimoto M, Fujita T. Nishimoto M, et al. Am J Physiol Renal Physiol. 2015 Mar 1;308(5):F377-87. doi: 10.1152/ajprenal.00477.2013. Epub 2014 Dec 17. Am J Physiol Renal Physiol. 2015. PMID: 25520008 Review. - Sex differences in dietary sodium evoked NCC regulation and blood pressure in male and female Sprague-Dawley, Dahl salt-resistant, and Dahl salt-sensitive rats.
Kim K, Nist KM, Puleo F, McKenna J 3rd, Wainford RD. Kim K, et al. Am J Physiol Renal Physiol. 2024 Aug 1;327(2):F277-F289. doi: 10.1152/ajprenal.00150.2023. Epub 2024 May 30. Am J Physiol Renal Physiol. 2024. PMID: 38813592 Free PMC article. - Is renal ß-adrenergic-WNK4-NCC pathway important in salt hypertension of Dahl rats?
Zicha J, Hojná S, Vaňourková Z, Kopkan L, Vaněčková I. Zicha J, et al. Physiol Res. 2019 Dec 30;68(6):873-882. doi: 10.33549/physiolres.934334. Epub 2019 Oct 25. Physiol Res. 2019. PMID: 31647304 - Pathophysiology of salt sensitivity hypertension.
Ando K, Fujita T. Ando K, et al. Ann Med. 2012 Jun;44 Suppl 1:S119-26. doi: 10.3109/07853890.2012.671538. Ann Med. 2012. PMID: 22713140 Review.
Cited by
- Central nervous system Gαi2-subunit proteins maintain salt resistance via a renal nerve-dependent sympathoinhibitory pathway.
Kapusta DR, Pascale CL, Kuwabara JT, Wainford RD. Kapusta DR, et al. Hypertension. 2013 Feb;61(2):368-75. doi: 10.1161/HYPERTENSIONAHA.111.00014. Epub 2012 Dec 3. Hypertension. 2013. PMID: 23213191 Free PMC article. - DNA hypermethylation and inflammatory markers in incident Japanese dialysis patients.
Kato S, Lindholm B, Stenvinkel P, Ekström TJ, Luttropp K, Yuzawa Y, Yasuda Y, Tsuruta Y, Maruyama S. Kato S, et al. Nephron Extra. 2012 Jan;2(1):159-68. doi: 10.1159/000339437. Epub 2012 Jun 20. Nephron Extra. 2012. PMID: 22811689 Free PMC article. - Oxidative stress in the brain causes hypertension via sympathoexcitation.
Kishi T, Hirooka Y. Kishi T, et al. Front Physiol. 2012 Aug 17;3:335. doi: 10.3389/fphys.2012.00335. eCollection 2012. Front Physiol. 2012. PMID: 22934082 Free PMC article. - Aberrant DNA methylation of hypothalamic angiotensin receptor in prenatal programmed hypertension.
Kawakami-Mori F, Nishimoto M, Reheman L, Kawarazaki W, Ayuzawa N, Ueda K, Hirohama D, Kohno D, Oba S, Shimosawa T, Marumo T, Fujita T. Kawakami-Mori F, et al. JCI Insight. 2018 Nov 2;3(21):e95625. doi: 10.1172/jci.insight.95625. JCI Insight. 2018. PMID: 30385711 Free PMC article. - Sympathetic regulation of NCC in norepinephrine-evoked salt-sensitive hypertension in Sprague-Dawley rats.
Frame AA, Puleo F, Kim K, Walsh KR, Faudoa E, Hoover RS, Wainford RD. Frame AA, et al. Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1623-F1636. doi: 10.1152/ajprenal.00264.2019. Epub 2019 Oct 14. Am J Physiol Renal Physiol. 2019. PMID: 31608673 Free PMC article.
References
- J Clin Invest. 1988 Sep;82(3):993-7 - PubMed
- Circ Res. 1986 Feb;58(2):241-8 - PubMed
- Am J Physiol Heart Circ Physiol. 2001 Nov;281(5):H1881-9 - PubMed
- Science. 2009 Sep 4;325(5945):1254-7 - PubMed
- Science. 2010 May 7;328(5979):753-6 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials